Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Particle size is a key parameter that must be measured to ensure reproducible production of cellulose nanocrystals (CNCs) and to achieve reliable performance metrics for specific CNC applications. Nevertheless, size measurements for CNCs are challenging due to their broad size distribution, irregular rod-shaped particles, and propensity to aggregate and agglomerate. We report an interlaboratory comparison (ILC) that tests transmission electron microscopy (TEM) protocols for image acquisition and analysis. Samples of CNCs were prepared on TEM grids in a single laboratory, and detailed data acquisition and analysis protocols were provided to participants. CNCs were imaged and the size of individual particles was analyzed in 10 participating laboratories that represent a cross section of academic, industrial, and government laboratories with varying levels of experience with imaging CNCs. The data for each laboratory were fit to a skew normal distribution that accommodates the variability in central location and distribution width and asymmetries for the various datasets. Consensus values were obtained by modeling the variation between laboratories using a skew normal distribution. This approach gave consensus distributions with values for mean, standard deviation, and shape factor of 95.8, 38.2, and 6.3 nm for length and 7.7, 2.2, and 2.9 nm for width, respectively. Comparison of the degree of overlap between distributions for individual laboratories indicates that differences in imaging resolution contribute to the variation in measured widths. We conclude that the selection of individual CNCs for analysis and the variability in CNC agglomeration and staining are the main factors that lead to variations in measured length and width between laboratories.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8262570PMC
http://dx.doi.org/10.1021/acs.analchem.0c02805DOI Listing

Publication Analysis

Top Keywords

particle size
8
cellulose nanocrystals
8
transmission electron
8
electron microscopy
8
interlaboratory comparison
8
acquisition analysis
8
skew normal
8
normal distribution
8
length width
8
cncs
6

Similar Publications

Development of benznidazole orally disintegrating tablets for paediatric patients.

J Pharm Pharmacol

September 2025

Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica II, Universidad de Buenos Aires, C1113AAD Buenos Aires, Argentina.

Objectives: To develop the orphan drug benznidazole (BNZ) in orally disintegrating tablets, for the neglected disease American Trypanosomiasis (Chagas disease) therapy. Although children are highly affected by this disease, there are no specific commercial pharmaceutical preparations for this age group in Argentina and in many other countries.

Methods: In the production process, co-milling in a ball mill was applied to enhance dissolution rates, followed by direct compression.

View Article and Find Full Text PDF

Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.

View Article and Find Full Text PDF

In recent years, amino acids have garnered extensive attention as environmentally friendly, small-dose additives for modulating hydrate formation and aggregation behavior. Amino acids, due to their amphiphilic nature, can adsorb at the gas-liquid interface and on hydrate crystal surfaces, thereby modifying interfacial properties and influencing crystal growth patterns. In our measurements, the amino acids displayed a concentration-dependent "double effect".

View Article and Find Full Text PDF

The iron nickel magnesium tetra-oxide (FeNiMgO) nanocomposites (NCs) first reported in this article were synthesized using the sol-gel method. For investigation using powder X-ray diffraction (PXRD), the presence of a cubic structure is confirmed. In Raman spectroscopy, the vibrational modes are investigated.

View Article and Find Full Text PDF

Background: Understanding starch behavior under various processing conditions is important for the development of novel food products with tailored nutritional profiles. This study investigated changes to the structure and properties of native corn starch (NCS) and biomimetic starch-entrapped microspheres following thermal and enzymatic treatments.

Results: Heat-treated microspheres showed more birefringence and structural order than native starch, indicating incomplete gelatinization due to the alginate matrix.

View Article and Find Full Text PDF