Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inflammatory bowel diseases, mainly ulcerative colitis and Crohn's disease are characterized by chronic inflammation in the intestine. Currently several therapeutic strategies available to treat inflammatory bowel diseases. Though, most treatments can be associated with serious adverse effects what justifies the search for new treatments. In this sense, we highlight the interest in herbal products rich in bioactive compounds which immunomodulatory and antioxidant properties as is the case of (Crassulaceae). This plant is used in traditional medicine in Brazil for treating inflammatory diseases. We hypothesized that hydroethanolic leaf extract has intestinal anti-inflammatory effects on two experimental colitis models: 2.4-dinitrobenzene sulfonic acid (DNBS) in rats, and dextran sulfate sodium (DSS) in mice. Ultra-fast liquid chromatography method used for the quantification of the main compounds indicated good linearity, specificity, selectivity, precision, robustness and accuracy. The major flavonoids (mg/g of the extract) quantified were: quercetin 3--α-L-arabinopyranosyl-(1→2)-α-L-rhamnopyranoside (35.56 ± 0.086 mg/g), kaempferol 3--α-L-arabinopyranosyl-(1→2)-α-L-rhamnopyranoside (4.66 ± 0.076 mg/g) and quercetin-3--rhamnopyranoside (4.56 ± 0.026 mg/g). The results obtained in the DNBS and DSS models indicate that extract has both chemopreventive and anti-inflammatory effects, observing a significant reduction in the disease activity index score, and less macroscopic and microscopic damage. The extract promoted downregulation of Toll-like receptor and B p65 nuclear factor gene expression, leading to a reduction in pro-inflammatory and oxidative mediators, chemokines, and cell adhesion molecules. This immunomodulatory property was proposed that one of the possible action mechanisms of extract. An improvement in intestinal damage was also associated with a reduction in oxidative stress and infiltration of leukocytes, as evidenced by the reduction in malonaldialdehyde and myeloperoxidase activity and increase in total glutathione in the colonic tissue. Moreover, the extract improved the cytoarchitecture of the colonic tissue and the integrity of the intestinal epithelial barrier by restoring the expression of the proteins associated with mucosa protection. In view of the beneficial effects showed by the leaf extract in preclinical rodent models of colitis there is the potential to conduct some future clinical studies to ensure safe and effective development of a phytotherapeutic treatment for human inflammatory bowel diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403504PMC
http://dx.doi.org/10.3389/fphar.2020.00998DOI Listing

Publication Analysis

Top Keywords

leaf extract
12
inflammatory bowel
12
bowel diseases
12
extract
8
experimental colitis
8
colitis models
8
anti-inflammatory effects
8
colonic tissue
8
effects
5
anti-inflammatory chemopreventive
4

Similar Publications

Background: This study aimed to develop gluten-free bread from chickpea flour by incorporation of varying levels (0 (B-C), 2.5 (B-1), 5 (B-2), and 10 g kg (B-3)) of madımak leaf powder (MLP), and to investigate its effect on physicochemical and bioactive properties, glycemic index, texture, and sensory attributes.

Results: Moisture ranged from 229 (B-3) to 244 g kg (control), while ash content increased with MLP, reaching 47 g kg in B-3 compared to 15.

View Article and Find Full Text PDF

Alstoniaschines A‒I, nine undescribed alkaloids from Alstonia scholaris and their potential medicinal effects on diabetic nephropathy.

Phytochemistry

September 2025

State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; Yunnan Characteristic Plant Extraction Laboratory Co. Ltd, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Educa

Alstoniaschines A‒I (1‒9), nine previously alkaloids sharing five different skeletons were obtained from the leaves of Alstonia scholaris. The structures and absolute configurations were established by their extensive spectroscopic data analyses, including NMR, HRESIMS, X-ray crystallography data, and theoretical ECD calculations. Compounds 1, 2, 3, and 9 exerted significant protective effect against oxidative stress and inflammatory damage of podocytes induced by high glucose, manifesting as the increase of superoxide dismutase, catalase, glutathione peroxidase, alongside the reductions of malondialdehyde, nitric oxide, lactate dehydrogenase.

View Article and Find Full Text PDF

The therapeutic effects of various tonic traditional Chinese medicines on demyelinating diseases.

Metab Brain Dis

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, Hubei, China.

Demyelinating diseases, a prevalent group of neurological disorders, lead to impaired nerve conduction and sensorimotor dysfunctions. Despite existing treatments demonstrating some efficacy, their limitations have driven research toward exploring natural remedies. This review summarizes the therapeutic potential of four traditional tonic Chinese herbal medicines-ginsenosides, deer antler polypeptides, resveratrol, and ginkgo leaf extracts-for demyelinating diseases.

View Article and Find Full Text PDF

Due to the growing environmental and health concerns with chemical plant stimulants, there is a growing need to find alternative sources of plant stimulants that could help the seeds germinate and sustain their growth in the global climate change scenario. The article compares various seed stimulants such as chemical compounds (benzothiadiazole, salicylic acid, glycine betaine), alcoholic extracts from commercial plant products (English oak bark, ginger spices, turmeric spices, caraway fruits) and from wild plant leaves (Japanese pagoda tree, Himalayan balsam, stinging nettle and Bohemian knotweed) and their effects on wheat seed germination and seedling characteristics. It was found that BTH had significantly lower effect on seedling characteristics such as SG3 (%), SG5 (%), R/S III, SVI I (mm) and SVI III (mg) followed by ZO on SG3 (%), SG5 (%) and GI (unit).

View Article and Find Full Text PDF