Article Synopsis

  • Large-scale whole-genome sequencing studies have allowed researchers to investigate rare genetic variants linked to complex traits, but traditional association tests don't effectively utilize variant functions.
  • STAAR (variant-set test for association using annotation information) is a new method that combines variant categories and comprehensive annotations with a dynamic weighting system for better analysis.
  • In applying STAAR to lipid traits across large sample sizes, researchers identified new associations, including rare variants linked to cholesterol levels, enhancing the understanding of genetic influences on heart health.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Large-scale whole-genome sequencing studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests have limited scope to leverage variant functions. We propose STAAR (variant-set test for association using annotation information), a scalable and powerful RV association test method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce 'annotation principal components', multidimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness and is scalable for analyzing very large cohort and biobank whole-genome sequencing studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery and 17,822 replication samples from the Trans-Omics for Precision Medicine Program. We discovered and replicated new RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7483769PMC
http://dx.doi.org/10.1038/s41588-020-0676-4DOI Listing

Publication Analysis

Top Keywords

whole-genome sequencing
12
sequencing studies
12
rvs associated
8
dynamic incorporation
4
incorporation multiple
4
multiple silico
4
silico functional
4
functional annotations
4
annotations empowers
4
empowers rare
4

Similar Publications

Purpose: To investigate the variants in 18 disease-causing genes associated with nonsyndromic myopia in 83 Chinese individuals diagnosed with early-onset high myopia(eo-HM).

Methods: Variants in 18 candidate genes in 83 probands with eo-HM were distinguished by whole-exome sequencing (WES) and assessed by multistep bioinformatics analysis.

Results: Four likely pathogenic variants were detected in 4 of the 83 probands (4.

View Article and Find Full Text PDF

Fragment dispersity index analysis of cfDNA fragments reveals chromatin accessibility and enables early cancer detection.

Cell Rep Methods

July 2025

Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China; Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China; College of Informatics, Huazhong Agricult

We introduce a cell-free DNA (cfDNA) fragmentation pattern: the fragment dispersity index (FDI), which integrates information on the distribution of cfDNA fragment ends with the variation in fragment coverage, enabling precise characterization of chromatin accessibility in specific regions. The FDI shows a strong correlation with chromatin accessibility and gene expression, and regions with high FDI are enriched in active regulatory elements. Using whole-genome cfDNA data from five datasets, we developed and validated the FDI-oncology model, which demonstrates robust performance in early cancer diagnosis, subtyping, and prognosis.

View Article and Find Full Text PDF

Aim: To investigate the phenotypic and genomic features of three multidrug-resistant (MDR) clinical mucoid and non-mucoid uropathogenic Escherichia coli (UPEC) strains to understand their antimicrobial resistance, biofilm formation, and virulence in urinary tract infections (UTIs).

Methods And Results: The UPEC strains A5, A10, and A15 were isolated from two UTI patients. Phenotypic assays included colony morphology, antibiotic susceptibility, motility, and biofilm formation.

View Article and Find Full Text PDF

Accurate tumor mutation burden (TMB) quantification is critical for immunotherapy stratification, yet remains challenging due to variability across sequencing platforms, tumor heterogeneity, and variant calling pipelines. Here, we introduce TMBquant, an explainable AI-powered caller designed to optimize TMB estimation through dynamic feature selection, ensemble learning, and automated strategy adaptation. Built upon the H2O AutoML framework, TMBquant integrates variant features, minimizes classification errors, and enhances both accuracy and stability across diverse datasets.

View Article and Find Full Text PDF

CHRFS5, HL_CHRU_S18, S48B, HL_CHRU_S16, S19, HL_CHRU_S79, and HL_CHRU_S111 were isolated from the biofilm of catheter tip of renal failure patients. Whole genome sequencing predicted the presence of multiple antibiotic-resistant gene cassettes.

View Article and Find Full Text PDF