Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recombination systems are widely used as bioengineering tools, but their sites have to be highly similar to a consensus sequence or to each other. To develop a recombination system free of these constraints, we turned toward sites from the bacterial integron system: single-stranded DNA hairpins specifically recombined by the integrase. Here, we present an algorithm that generates synthetic sites with conserved structural features and minimal sequence-level constraints. We demonstrate that all generated sites are functional, their recombination efficiency can reach 60%, and they can be embedded into protein coding sequences. To improve recombination of less efficient sites, we applied large-scale mutagenesis and library enrichment coupled to next-generation sequencing and machine learning. Our results validated the efficiency of this approach and allowed us to refine synthetic design principles. They can be embedded into virtually any sequence and constitute a unique example of a structure-specific DNA recombination system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7439510PMC
http://dx.doi.org/10.1126/sciadv.aay2922DOI Listing

Publication Analysis

Top Keywords

structure-specific dna
8
dna recombination
8
recombination system
8
recombination
6
sites
6
recombination sites
4
sites design
4
design validation
4
validation machine
4
machine learning-based
4

Similar Publications

Sinonasal mucosal melanoma (SNMM) is a rare aggressive malignancy of the sinonasal tract. Due to its advanced clinical presentation and frequent late-stage diagnosis, the 5-year survival rate is less than 30%, with an even worse prognosis in patients with distant metastasis (SNMM-M). Therefore, characterizing the molecular landscape of SNMM may provide novel therapeutic targets for SNMM-M.

View Article and Find Full Text PDF

BRCA1 is a crucial component of homologous recombination (HR), a high-fidelity pathway for repairing double-stranded DNA breaks (DSBs) in human cells. The central region of the BRCA1 protein contains two putative DNA binding domains (DBDs), yet their relative substrate specificities and functional contributions to HR remain unclear. Here, we characterized the DNA binding properties of DBD1 (amino acids 330-554), DBD2 (amino acids 894-1057), and BRCA1 C-terminal (BRCT) repeats using biolayer interferometry.

View Article and Find Full Text PDF

Purpose: Metastatic castration-resistant prostate cancer (mCRPC) remains a significant therapeutic challenge and a leading cause of cancer-related mortality in men. PARP inhibitors like Olaparib are effective in homologous recombination repair (HRR)-deficient tumors, but resistance often arises through DNA repair restoration. This study explores the role of the structure-specific endonuclease subunit SLX1, a catalytic subunit of the SLX1-SLX4 endonuclease complex, in Olaparib resistance.

View Article and Find Full Text PDF

A novel one-step nucleic acid detection platform termed FACER (FEN1-assisted Cascade Enzymatic Reaction) has been developed, leveraging the structure-specific cleavage ability of the flap endonuclease (FEN1) enzyme for the sensitive detection of target DNA. FACER employs two specifically designed probes that hybridize with target DNA, forming a UP single flap structure cleaved by FEN1 to release adenosine monophosphate (AMP). The AMP serves as a substrate in a cascade enzymatic reaction (CER) involving myokinase, pyruvate kinase, and hexokinase, ultimately resulting in a decrease in glucose concentration measurable using a personal glucose meter (PGM).

View Article and Find Full Text PDF

Palindrome design-guided "single-flap-double-duties" and "dual-enzymes-quadruple-cycles" enabled nano-signal amplification for customized FEN1 sensing.

Talanta

July 2025

Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, Hubei, China. Electronic address:

Flap endonuclease 1 (FEN1), a structure-specific nuclease, is usually overexpressed in various types of cancer cells and has been recognized as a promising biomarker for molecular diagnostics. In this work, we developed a one-tube and ultrasensitive method for FEN1 sensing based on customized target recognition, exponential signal amplification and nano-signal transduction. Due to rational palindrome design, only two DNA substrates and a pair of enzymes were needed in the sensing.

View Article and Find Full Text PDF