98%
921
2 minutes
20
Purpose: Inflammatory bowel diseases are associated with an increase in the whole-body protein turnover, thus possibly requiring an additional supply of dietary proteins. Our aim was to evaluate whether increasing dietary protein content could alleviate protein metabolism alterations in the injured splanchnic and peripheral tissues during colitis and spontaneous mucosal healing.
Methods: Mice with acute chemically induced colitis received either a normal protein (P14, 14% as energy), a moderately (P30, 30%) and a very high-protein (P53, 55%) diets. At different times after the challenge, protein synthesis rate was determined in tissues using a flooding dose of C valine.
Results: Colon, liver and spleen protein synthesis rates were significantly increased after colitis induction, while being decreased in the caecum, kidneys and muscle. Contrastingly to the two other diets, P30 diet consumption allowed faster recovery of the animals, and this coincided with a rapid resaturation of the initial protein synthesis in the colon. In the other tissues studied, the high-protein diets show different effects depending on the dietary protein content consumed and on the examined tissues, with a general trend of P53 in lowering anabolism rates.
Conclusion: This study highlights the severe impact of acute colonic inflammation on protein metabolism in different organs. In addition, dietary protein content modulated the recovery of the initial protein synthesis rate in the various tissues following colitis induction. P30 diet consumption notably showed a better ability to alleviate protein metabolism perturbations induced by colitis, that may explain its documented beneficial effect on colon mucosal healing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00394-020-02365-3 | DOI Listing |
Pestic Biochem Physiol
November 2025
Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China. Electronic address:
The extensive use of highly toxic and residual pesticides has a significant negative impact on agricultural production and the ecological environment. The development of new green antiviral agents has become a major demand for ensuring the development of green ecological agriculture. Indole alkaloids are widely present in nature and have diverse biological activities.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Key Laboratory of Microbiological Metrology, Measurement & Bio-product Quality Security, State Administration for Market Regulation, School of Life Sciences, China Jiliang University, Hangzhou 310018, China. Electronic a
The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive pests of rice, and its management has primarily relied on chemical insecticides. Currently, the chemical management of BPH is facing challenges due to the development of pesticide resistance. RNA interference (RNAi) provides attractive alternative to chemical insecticides, provided that suitable target genes are identified.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:
The brown planthopper (BPH), Nilaparvata lugens is a typical pesticide-induced resurgent rice pest. A previous study showed that a fungicide, jinggangmycin (JGM)-treated rice led to markedly increased sugar content and (Insulin-like Peptide 2) ILP2 in response to sugar-mediated TOR signaling and stimulated fecundity in BPH. However, the role of the other ILPs in response to types of carbohydrate compounds remained poorly understood.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, China. Electronic address:
This study reported a modified hydrothermal solvent method for preparing lignin microspheres (LNSs) with controllable size and morphology by precisely regulating the reaction temperature (160-220 °C). Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) were employed to evaluate the structure, morphological, and dimensional attributes of lignin microspheres, and the synthesis mechanism was discussed. The antibacterial efficacy of the hydrothermally treated lignin microspheres (HTLNSs) was evaluated through phosphate-buffered saline (PBS) culture assays, as well as by assessing nucleic acid and protein leakage, and their inhibitory effect on cell membrane permeability.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
September 2025
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Malhaur Station Road, Lucknow 226028, India; Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Malhaur Station Road, Lucknow 226028, India. Electronic address:
Scenedesmus quadricauda, a freshwater microalga, has gained attention for its high lipid accumulation potential. However, information on fatty acid (FA) biosynthesis pathways in Scenedesmus species remains limited. Biomass (1.
View Article and Find Full Text PDF