98%
921
2 minutes
20
Environmental complexity leads to differences in the spatial distribution of heavy metal pollution in soil and rice. Such spatial differences will seriously affect the safety of planted rice and can impact regional management and control. How to scientifically reveal these spatial differences is an urgent problem. In this study, the spatial mismatch relationship between Cd pollution in soil and rice grains (brown rice) was first explored by the interpolation method. To further reveal the causes of these, the specific recognition rules of the spatial relationship of Cd pollution were extracted based on a decision tree model, and the results were mapped. The results revealed a spatial mismatch in Cd pollution between the soil and rice grains in the study area, and the main results are as follows: (i) slight soil pollution and safe rice accounted for 68.88% of the area; (ii) slight soil pollution and serious rice pollution accounted for 13.39% of the area and (iii) safe soil and serious rice pollution accounted for 11.63% of the area. In addition, 11 recognition rules of Cd spatial pollution relationship between soil and rice were proposed, and the main environmental factors were determined: SOM (soil organic matter), Dis-residence (distance from residential area), soil pH and LAI (leaf area index). The average accuracy of rule recognition was 75.90%. The study reveals the spatial mismatch of heavy metal pollution in soil and crops, providing decision-making references for the spatial accurate identification and targeted prevention of heavy metal pollution spaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2020.115029 | DOI Listing |
Environ Monit Assess
September 2025
College of Ecological and Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.
View Article and Find Full Text PDFEnviron Sci Process Impacts
September 2025
Nebraska Water Center, Part of the Robert B. Daugherty Water for Food Global Institute 2021 Transformation Drive, University of Nebraska, Lincoln, Nebraska 68588-6204, USA.
Rice is consumed by ∼50% of the global population, grown primarily in flooded paddy fields, and is susceptible to arsenic accumulation. Inorganic arsenic, particularly in reduced form (As(III)), is considered the most toxic and is more likely to accumulate in rice grains under flooded systems. We postulate that increased levels of highly reactive iron minerals, such as ferrihydrite, in paddy soils can regulate the bioavailability of arsenic and reduce its uptake by priming iron plaque formation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2025
Faculty of Environment and Resource Studies, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand.
Soil washing with surfactants is a promising technique for remediating petroleum hydrocarbon-contaminated soils. This study evaluates a biosurfactant extracted from Eichhornia crassipes (water hyacinth), an abundant aquatic weed in Thailand, using ultrasound-assisted extraction for diesel-contaminated soil remediation. The biosurfactant extract (Extract WH) was characterized for its surface tension reduction, critical micelle concentration (CMC), emulsification capacity with diesel, and phytotoxicity.
View Article and Find Full Text PDFBull Environ Contam Toxicol
September 2025
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).
View Article and Find Full Text PDF