Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Scientific evidence spanning experimental and epidemiologic studies has shown that air pollution exposures can lead to a range of health effects. Quantitative approaches that allow for the estimation of the adverse health impacts attributed to air pollution enable researchers and policy analysts to convey the public health impact of poor air quality. Multiple tools are currently available to conduct such analyses, which includes software packages designed by the World Health Organization (WHO): AirQ+, and the U.S. Environmental Protection Agency (U.S. EPA): Environmental Benefits Mapping and Analysis Program - Community Edition (BenMAP - CE), to quantify the number and economic value of air pollution-attributable premature deaths and illnesses. WHO's AirQ+ and U.S. EPA's BenMAP - CE are among the most popular tools to quantify these effects as reflected by the hundreds of peer-reviewed publications and technical reports over the past two decades that have employed these tools spanning many countries and multiple continents. Within this paper we conduct an analysis using common input parameters to compare AirQ+ and BenMAP - CE and show that the two software packages well align in the calculation of health impacts. Additionally, we detail the research questions best addressed by each tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7425641PMC
http://dx.doi.org/10.3390/atmos11050516DOI Listing

Publication Analysis

Top Keywords

air pollution
12
public health
8
who's airq+
8
airq+ epa's
8
environmental benefits
8
benefits mapping
8
mapping analysis
8
analysis program
8
program community
8
community edition
8

Similar Publications

India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Fast-hyperspectral imaging remote sensing: Emission quantification of NO and SO from marine vessels.

Light Sci Appl

September 2025

Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.

Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.

View Article and Find Full Text PDF

China's aluminum-products industry, a large-scale consumer of industrial paints, is a potentially significant source of full-volatility organic compounds (F-VOCs). However, the emission characteristics of F-VOCs, including VOCs, intermediate-, semi-, and low-volatility organic compounds (I/S/LVOCs), and their role in ozone formation potentials (OFP), and secondary organic aerosol formation potentials (SOAP) remain unclear. In this study, we collected in-field samples from three industrial paints (solvent-based, water-based and powder paints) at spraying and drying processes, and treatment devices to analyze the emission characteristics of F-VOCs, OFP, SOAP.

View Article and Find Full Text PDF

Extremely high toxicity of gaseous intermediate/semi volatile organic compounds emitted from typical incomplete biomass burning in China.

J Hazard Mater

September 2025

Department of Environmental Science and Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, China.

Incomplete biomass burning emits complex mixture of gaseous and particulate organic pollutants, yet their chemical speciation and toxicity have not been fully identified. This study profiled the organic fingerprinting primarily emitted from typical incomplete biomass burning through nontargeted analysis and estimated their toxic potencies. Gaseous organics exhibited 2.

View Article and Find Full Text PDF