A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In order to have research on the deformation characteristics and mechanical properties of human red blood cells (RBCs), finite element models of RBC optical tweezers stretching and atomic force microscope (AFM) indentation were established. Non-linear elasticity of cell membrane was determined by using the neo-Hookean hyperelastic material model, and the deformation of RBC during stretching and indentation had been researched in ABAQUS, respectively. Considering the application of machine learning (ML) in material parameters identification, ML algorithm was combined with finite element (FE) method to identify the constitutive parameters. The material parameters were estimated according to the deformation characteristics of RBC obtained from the change of cell diameter with stretching force when RBC was stretched. The non-linear relationship between material parameter and RBC deformation was established by building a FE-model. The FE simulation of RBC stretching was used to construct the training set and the neural network trained by a large number of samples was used to predict the material parameter. With the predicted parameter, FE simulation of RBC under AFM indentation to explore the local deformation mechanism was completed.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2020.1791836DOI Listing

Publication Analysis

Top Keywords

finite element
12
red blood
8
neural network
8
deformation characteristics
8
afm indentation
8
rbc stretching
8
material parameters
8
material parameter
8
simulation rbc
8
rbc
7

Similar Publications