Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Jasmonates (JAs) are important regulators of plant growth, development, and defense. ATP-binding cassette (ABC) transporters participate in disease resistance by transporting JAs or antimicrobial secondary metabolites in dicotyledons. Here, we functionally characterized a JAs-inducible rice gene (OsPDR1) that encodes a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. By affecting JAs biosynthesis, overexpression of OsPDR1 resulted in constitutive activation of defense-related genes and enhanced resistance to bacterial blight, whereas its mutation decreased pathogen resistance. In addition, overexpression and mutation of OsPDR1 resulted in decreased and increased plant growth at seedling stage, respectively, but eventually led to decreased grain yield. OsPDR1 encodes three splice isoforms, of which OsPDR1.2 and OsPDR1.3 contain a conserved glutamate residue in the "ENI-motif" of the first nucleotide-binding domain, while OsPDR1.1 does not. The three OsPDR1 transcripts are developmentally controlled and differentially regulated by JAs and pathogen infection. The OsPDR1.2- and OsPDR1.3-overexpressing plants exhibited higher JAs content and stronger growth inhibition and disease resistance than OsPDR1.1-overexpressing plants. These results indicated that alternative splicing affects the function of OsPDR1 gene in regulation of growth, development and disease resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2020.110582DOI Listing

Publication Analysis

Top Keywords

plant growth
12
disease resistance
12
atp-binding cassette
8
pathogen resistance
8
growth development
8
abc transporters
8
ospdr1 encodes
8
ospdr1
7
resistance
7
growth
5

Similar Publications

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

Bacillus drives functional states in synthetic plant root bacterial communities.

Genome Biol

September 2025

Department of Biology, Plant-Microbe Interactions, Science for Life, Utrecht University, Utrecht, 3584CH, The Netherlands.

Background: Plant roots release root exudates to attract microbes that form root communities, which in turn promote plant health and growth. Root community assembly arises from millions of interactions between microbes and the plant, leading to robust and stable microbial networks. To manage the complexity of natural root microbiomes for research purposes, scientists have developed reductionist approaches using synthetic microbial inocula (SynComs).

View Article and Find Full Text PDF

Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.

View Article and Find Full Text PDF

Potato bolters are caused by excision of a transposon from the StCDF1.3 allele, resulting in a somatic mutant with late maturity. Somatic mutations during vegetative propagation can lead to novel genotypes, known as sports.

View Article and Find Full Text PDF