Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Brain tumors' severity ranges from benign to highly aggressive and invasive. Bioengineering tools can assist in understanding the pathophysiology of these tumors from outside the body and facilitate development of suitable antitumoral treatments. Here, we first describe the physiology and cellular composition of brain tumors. Then, we discuss the development of three-dimensional tissue models utilizing brain tumor cells. In particular, we highlight the role of hydrogels in providing a biomimetic support for the cells to grow into defined structures. Microscale technologies, such as electrospinning and bioprinting, and advanced cellular models aim to mimic the extracellular matrix and natural cellular localization in engineered tumor tissues. Lastly, we review current applications and prospects of hydrogels for therapeutic purposes, such as drug delivery and co-administration with other therapies. Through further development, hydrogels can serve as a reliable option for modeling and treatment of brain tumors for translational medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7402618PMC
http://dx.doi.org/10.1007/s42242-020-00084-6DOI Listing

Publication Analysis

Top Keywords

brain tumor
8
brain tumors
8
brain
5
engineered hydrogels
4
hydrogels brain
4
tumor culture
4
culture therapy
4
therapy brain
4
brain tumors'
4
tumors' severity
4

Similar Publications

Central nervous system tumors with BCL6 corepressor (BCOR) internal tandem duplications (ITDs) constitute a rare, recently characterized pediatric neoplasm with distinct molecular and histopathological features. To date, 69 cases have been documented in the literature, including our institutional case. These neoplasms predominantly occur in young children, with the cerebellum representing the most frequent anatomical location.

View Article and Find Full Text PDF

Background: Disruption of the blood-brain barrier (BBB) in high-grade brain tumors is characterized by contrast accumulation on diagnostic imaging. This window of opportunity study correlates contrast imaging features with the tumor distribution of BBB-permeable (levetiracetam) and -impermeable (cefazolin) drugs.

Methods: Patients with a clinical diagnosis of a high-grade brain tumor underwent MRI for surgical planning.

View Article and Find Full Text PDF

Introduction: The incidence of brain metastases in patients diagnosed with ad-vanced lung cancer is high, drawing significant attention to the risk factors associated with this progression.

Methods: A total of 252 advanced non-small cell lung cancer (NSCLC) patients with brain metastases were enrolled in this study between July 2018 and December 2023 from our hos-pital. Additionally, driver genes, including EGFR, ALK, ROS1, KRAS, and RET, were doc-umented.

View Article and Find Full Text PDF

Multi-Enzymatic Cascade Catalysis in Photodynamic Nanozymes for Augmenting Radiotherapy of Breast Cancer.

Adv Healthc Mater

September 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.

Overcoming resistance to radiotherapy remains a significant challenge in breast cancer management. A one-step coordinated synthesis of BODIPY-integrated photodynamic nanozymes (FZBNPs) that facilitate an orthogonal catalytic cascade for radiotherapy potentiation is presented. The engineered FZBNPs simultaneously alleviate tumor hypoxia through catalase-mimetic oxygen (O) generation and amplify reactive oxygen species (ROS) production via peroxidase-like activity, synergizing with BODIPY-mediated singlet oxygen (O) generation under 660 nm light irradiation.

View Article and Find Full Text PDF

Early postoperative seizures, defined as occurring within 7 days after surgery, are a significant complication that occurs following neurosurgical procedures involving cerebral manipulation. As a result, short-term antiseizure medication is typically administered in Japan despite the lack of consensus regarding its prophylactic use. Perampanel hydrate, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist, was recently introduced in an intravenous formulation in Japan, providing new potential for early postoperative seizures prevention during the perioperative period.

View Article and Find Full Text PDF