Differentiation of endometrial adenocarcinoma from adenocarcinoma of cervix using kinetic parameters derived from DCE-MRI.

Eur J Radiol

Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, CT06510, USA.

Published: September 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: This prospective study aimed to investigate the value of kinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in differentiating uterine endometrioid adenocarcinoma (EAC) from adenocarcinoma of cervix (AdC).

Methods: Seventy-five newly diagnosed patients with distinctive pathology underwent DCE-MRI. Observers independently calculated the tumor diameters and DCE-MRI parameters using both population and individual-based arterial input function (AIF). Inter-observer consistency was evaluated, and a comparative analysis between EAC (n = 47) and AdC (n = 28) was performed. Regression analysis was used to select parameters that best distinguished EAC from AdC, and to generate predictive models. Receiver operating characteristic curve (ROC) was applied to calculate the diagnostic efficiency of single parameter and the predictive models.

Results: Inter-observer consistency was excellent (intra-class correlation [ICC] = 0.902-0.981), especially when calculated via population AIF with relatively higher ICC and smaller SD on Bland-Altman plot. Tumor diameters were not correlated with tumor types. All the DCE-MRI parameters were lower in EAC compared to AdC, except K by population AIF and TTP by both sets of AIFs. The statistical parameters were V, Maxslop, and Maxconc by population AIF, and Maxslop and K by individual AIF included in the predictive models, respectively. The two predictive models with combined parameters showed improved diagnostic efficiency in differentiating these two diseases compared with a single parameter.

Conclusion: DCE-MRI can quantitatively evaluate the perfusion difference between EAC and AdC, thus improving the identification of uterine adenocarcinoma with uncertain biopsy pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejrad.2020.109190DOI Listing

Publication Analysis

Top Keywords

predictive models
12
population aif
12
adenocarcinoma cervix
8
kinetic parameters
8
parameters derived
8
tumor diameters
8
dce-mri parameters
8
inter-observer consistency
8
eac adc
8
diagnostic efficiency
8

Similar Publications

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Coronary heart disease (CHD) is a leading cause of morbidity and mortality; patients with type 2 diabetes mellitus (T2DM) are at particularly high risk, highlighting the need for reliable biomarkers for early detection and risk stratification. We investigated whether combining the stress hyperglycemia ratio (SHR) and systemic inflammation response index (SIRI) improves CHD detection in T2DM. In this retrospective cohort of 943 T2DM patients undergoing coronary angiography, associations of SHR and SIRI with CHD were evaluated using multivariable logistic regression and restricted cubic splines; robustness was examined with subgroup and sensitivity analyses.

View Article and Find Full Text PDF

Designing Buchwald-Hartwig Reaction Graph for Yield Prediction.

J Org Chem

September 2025

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, P. R. China.

The Buchwald-Hartwig (B-H) reaction graph, a novel graph for deep learning models, is designed to simulate the interactions among multiple chemical components in the B-H reaction by representing each reactant as an individual node within a custom-designed reaction graph, thereby capturing both single-molecule and intermolecular relationship features. Trained on a high-throughput B-H reaction data set, B-H Reaction Graph Neural Network (BH-RGNN) achieves near-state-of-the-art performance with an score of 0.971 while maintaining low computational costs.

View Article and Find Full Text PDF

Background: Labor shortages in health care pose significant challenges to sustaining high-quality care for people with intellectual disabilities. Social robots show promise in supporting both people with intellectual disabilities and their health care professionals; yet, few are fully developed and embedded in productive care environments. Implementation of such technologies is inherently complex, requiring careful examination of facilitators and barriers influencing sustained use.

View Article and Find Full Text PDF

The calculation of the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap for chemical molecules is computationally intensive using quantum mechanics (QM) methods, while experimental determination is often costly and time-consuming. Machine Learning (ML) offers a cost-effective and rapid alternative, enabling efficient predictions of HOMO-LUMO gap values across large data sets without the need for extensive QM computations or experiments. ML models facilitate the screening of diverse molecules, providing valuable insights into complex chemical spaces and integrating seamlessly into high-throughput workflows to prioritize candidates for experimental validation.

View Article and Find Full Text PDF