98%
921
2 minutes
20
The present work illustrates the promising intervention of smart diagnostics devices through artificial intelligence (AI) and mechanobiological approaches in health care practices. The artificial intelligence and mechanobiological approaches in diagnostics widen the scope for point of care techniques for the timely revealing of diseases by understanding the biomechanical properties of the tissue of interest. Smart diagnostic device senses the physical parameters due to change in mechanical, biological, and luidic properties of the cells and to control these changes, supply the necessary drugs immediately using AI techniques. The latest techniques like sweat diagnostics to measure the overall health, Photoplethysmography (PPG) for real-time monitoring of pulse waveform by capturing the reflected signal due to blood pulsation), Micro-electromechanical systems (MEMS) and Nano-electromechanical systems (NEMS) smart devices to detect disease at its early stage, lab-on-chip and organ-on-chip technologies, Ambulatory Circadian Monitoring device (ACM), a wrist-worn device for Parkinson's disease have been discussed. The recent and futuristic smart diagnostics tool/techniques like emotion recognition by applying machine learning algorithms, atomic force microscopy that measures the fibrinogen and erythrocytes binding force, smartphone-based retinal image analyser system, image-based computational modeling for various neurological disorders, cardiovascular diseases, tuberculosis, predicting and preventing of Zika virus, optimal drugs and doses for HIV using AI, etc. have been reviewed. The objective of this review is to examine smart diagnostics devices based on artificial intelligence and mechanobiological approaches, with their medical applications in healthcare. This review determines that smart diagnostics devices have potential applications in healthcare, but more research work will be essential for prospective accomplishments of this technology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7376999 | PMC |
http://dx.doi.org/10.1007/s13205-020-02342-x | DOI Listing |
Mater Today Bio
October 2025
School of Pharmacy, Henan Medical University, Xinxiang, Henan, China.
Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
Background: Four-dimensional magnetic resonance imaging (4D-MRI) holds great promise for precise abdominal radiotherapy guidance. However, current 4D-MRI methods are limited by an inherent trade-off between spatial and temporal resolutions, resulting in compromised image quality characterized by low spatial resolution and significant motion artifacts, hindering clinical implementation. Despite recent advancements, existing methods inadequately exploit redundant frame information and struggle to restore structural details from highly undersampled acquisitions.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
Peptide-based fluorescent probes have found widespread applications in biomedical research, including bio-imaging, disease diagnosis, drug discovery, and image-guided surgery. Their favorable properties-such as small molecular size, low toxicity, minimal immunogenicity, and high targeting specificity-have contributed to their growing utility in both basic research and translational medicine. This review provides a comprehensive overview of recent advances in peptide-based fluorescent probes, emphasizing design strategies, biological targets, and diverse functional applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
DUT School of Software Technology & DUT-RU International School of Information Science and Engineering, Dalian University of Technology, Dalian 116620, China.
Achieving both high sensitivity and a wide detection range in flexible pressure sensors poses a challenge due to their inherent trade-off. Although porous structures offer promising solutions, conventional methods (templating, foaming, and freeze-drying) fail to precisely control cavity dimensions, spatial arrangement, and 3D morphology, which are crucial for sensing performance. Here, we propose a scalable fabrication strategy that integrates triply periodic minimal surface (TPMS) geometries─precisely engineered via FDM 3D printing─with ultrasonic impregnation of carbon black (CB) into TPU scaffolds.
View Article and Find Full Text PDF