98%
921
2 minutes
20
Over the past decade, topology has emerged as a major branch in broad areas of physics, from atomic lattices to condensed matter. In particular, topology has received significant attention in photonics because light waves can serve as a platform to investigate nontrivial bulk and edge physics with the aid of carefully engineered photonic crystals and metamaterials. Simultaneously, photonics provides enriched physics that arises from spin-1 vectorial electromagnetic fields. Here, we review recent progress in the growing field of topological photonics in three parts. The first part is dedicated to the basics of topological band theory and introduces various two-dimensional topological phases. The second part reviews three-dimensional topological phases and numerous approaches to achieve them in photonics. Last, we present recently emerging fields in topological photonics that have not yet been reviewed. This part includes topological degeneracies in nonzero dimensions, unidirectional Maxwellian spin waves, higher-order photonic topological phases, and stacking of photonic crystals to attain layer pseudospin. In addition to the various approaches for realizing photonic topological phases, we also discuss the interaction between light and topological matter and the efforts towards practical applications of topological photonics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371865 | PMC |
http://dx.doi.org/10.1038/s41377-020-0331-y | DOI Listing |
Biomed Phys Eng Express
September 2025
College of Computer Science and Technology, China University of Petroleum East China - Qingdao Campus, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China, Qingdao, Shandong, 266580, CHINA.
Purpose: Cerebrovascular segmentation is crucial for the diagnosis and treatment of cerebrovascular diseases. However, accurately extracting cerebral vessels from Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) remains challenging due to the topological complexity and anatomical variability.
Methods: This paper presents a novel Y-shaped segmentation network with fast Fourier convolution and Mamba, termed F-Mamba-YNet.
Chem Rev
September 2025
Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200438, P. R. China.
Diffusion is a fundamental process in the transfer of mass and energy. Diffusion metamaterials, a class of engineered materials with distinctive properties, enable precise control and manipulation of diffusion processes. Meanwhile, topology, a branch of mathematics, has attracted growing interest within the condensed matter physics community.
View Article and Find Full Text PDFNat Nanotechnol
September 2025
Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
Topological photonics explores photonic systems that exhibit robustness against defects and disorder, enabled by protection from underlying topological phases. These phases are typically realized in linear optical systems and characterized by their intrinsic photonic band structures. Here we experimentally study Floquet Chern insulators in periodically driven nonlinear photonic crystals, where the topological phase is controlled by the polarization and the frequency of the driving field.
View Article and Find Full Text PDFOrg Lett
September 2025
Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China.
Nanographenes with diverse topological structures have shown enormous potential in fields such as photonics, optoelectronics, and spintronics. This work employs a "from-core-to-branch" strategy to controllably synthesize star-shaped nanographenes with various symmmetries. The obtained star-shaped nanographenes exhibit symmetry-dependent HOMO-LUMO gaps and photoluminescence quantum yields, revealing the importance of precisely controlling the molecular topologies.
View Article and Find Full Text PDFNat Mater
September 2025
Department of Physics, University of Colorado, Boulder, CO, USA.
Time crystals are unexpected states of matter that spontaneously break time-translation symmetry either in a discrete or continuous manner. However, spatially mesoscale space-time crystals that break both space and time symmetries have not been reported. Here we report a continuous space-time crystal in a nematic liquid crystal driven by ambient-power, constant-intensity unstructured light.
View Article and Find Full Text PDF