98%
921
2 minutes
20
Cell growth is driven by the synthesis of proteins, genes, and other cellular components. Defining processes that limit biosynthesis rates is fundamental for understanding the determinants of cell physiology. Here, we analyze the consequences of engineering cells to express extremely high levels of mCherry proteins, as a tool to define limiting processes that fail to adapt upon increasing biosynthetic demands. Protein-burdened cells were transcriptionally and phenotypically similar to mutants of the Mediator, a transcription coactivator complex. However, our binding data suggest that the Mediator was not depleted from endogenous promoters. Burdened cells showed an overall increase in the abundance of the majority of endogenous transcripts, except for highly expressed genes. Our results, supported by mathematical modeling, suggest that wild-type cells transcribe highly expressed genes at the maximal possible rate, as defined by the transcription machinery's physical properties. We discuss the possible cellular benefit of maximal transcription rates to allow a coordinated optimization of cell size and cell growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466996 | PMC |
http://dx.doi.org/10.1534/g3.120.401303 | DOI Listing |
Crit Rev Immunol
January 2025
Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, India 695581.
Rheumatoid arthritis (RA) is a chronic autoimmune condition that impacts the immune system, especially through changes in the splenic immune cell system. This review provides an overview of the role of splenocytes in T cell signaling and their immune response in RA patients. The spleen acts as a critical site for the activation and differentiation of splenic immune cells like T cells, B cells, macrophages, dendritic cells, and NK cells.
View Article and Find Full Text PDFCrit Rev Immunol
January 2025
Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Dist. Medchal,500078, Telangana State, India.
IL-2 agonists significantly modulate T cell regulation, impacting activation, proliferation, differentiation, and immune homeostasis. Interleukin-2 (IL-2) is crucial for T cell growth and function, binding to the IL-2 receptor to trigger signaling pathways that balance immune responses. IL-2 promotes the expansion of effector T cells and enhances regulatory T cells (Tregs), preventing autoimmune responses.
View Article and Find Full Text PDFCrit Rev Immunol
January 2025
State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China.
Stemming from human immune organs, tonsil-derived mesenchymal stem cells (TMSCs) hold unique strengths in differentiation potential and immune regulatory functions. These characteristics make them valuable for therapeutic applications, particularly in regenerative medicine and autoimmune disease treatment, as they can modulate immune responses and promote tissue repair. Their ability to interact with various cell types and secrete a range of bioactive molecules further enhances their role in orchestrating healing processes, making them a promising avenue for innovative therapies aimed at restoring balance in the immune system and facilitating recovery from injury or disease.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
January 2025
Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China.
Despite advancements in systemic therapy, the mortality rate for patients with metastatic melanoma remains around 70%, underscoring the imperative for alternative treatment strategies. Through the establishment of a chemoresistant melanoma model and a subsequent drug investigation, we have identified pacritinib, a medication designed for treating myelofibrosis and severe thrombocytopenia, as a potential candidate to overcome resistance to melanoma therapy. Our research reveals that pacritinib, administered at clinically achievable concentrations, effectively targets dacarbazine-resistant melanoma cells by suppressing IRAK1 rather than JAK2.
View Article and Find Full Text PDFJ Environ Pathol Toxicol Oncol
January 2025
The Hippo pathway and its transcription co-activator YAP play a critical role in the regulation of cell proliferation, apoptosis and the control of organ size. In the past several years, YAP has been found to be expressed in various human cancers, however, its expression in Nasopharyngeal Carcinoma (NPC) remains unstudied. In this report, we found that YAP was overexpressed in human NPC tissues, and its expression was also significantly higher in five NPC cell lines when compared with the nasopharyngeal epithelial cell line NP69 (P < 0.
View Article and Find Full Text PDF