Publications by authors named "Moshe Kafri"

Approximately one-third of global CO assimilation is performed by the pyrenoid, a liquid-like organelle found in most algae and some plants. Specialized pyrenoid-traversing membranes are hypothesized to drive CO assimilation in the pyrenoid by delivering concentrated CO, but how these membranes are made to traverse the pyrenoid matrix remains unknown. Here we show that proteins SAGA1 and MITH1 cause membranes to traverse the pyrenoid matrix in the model alga Chlamydomonas reinhardtii.

View Article and Find Full Text PDF

Approximately one-third of global CO assimilation is performed by the pyrenoid , a liquid-like organelle found in most algae and some plants . Specialized membranes are hypothesized to drive CO assimilation in the pyrenoid by delivering concentrated CO , but their biogenesis and function have not been experimentally characterized. Here, we show that homologous proteins SAGA1 and MITH1 mediate the biogenesis of the pyrenoid membrane tubules in the model alga and are sufficient to reconstitute pyrenoid-traversing membranes in a heterologous system, the plant .

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied the regulation of photosynthesis using the alga Chlamydomonas reinhardtii and identified 70 genes that were previously not well understood but are essential for the process.
  • They analyzed mutant strains missing these genes, leading to the assignment of 34 genes involved in forming and regulating specific photosynthetic complexes.
  • The study reveals new roles for several proteins in photosynthesis regulation, providing a valuable resource for understanding how photosynthesis works at a molecular level.
View Article and Find Full Text PDF

Cell growth is driven by the synthesis of proteins, genes, and other cellular components. Defining processes that limit biosynthesis rates is fundamental for understanding the determinants of cell physiology. Here, we analyze the consequences of engineering cells to express extremely high levels of mCherry proteins, as a tool to define limiting processes that fail to adapt upon increasing biosynthetic demands.

View Article and Find Full Text PDF

Growing cells coordinate protein translation with metabolic rates. Central to this coordination is ribosome production. Ribosomes drive cell growth, but translation of ribosomal proteins competes with production of non-ribosomal proteins.

View Article and Find Full Text PDF

The minimal description of a growing cell consists of self-replicating ribosomes translating the cellular proteome. While neglecting all other cellular components, this model provides key insights into the control and limitations of growth rate. It shows, for example, that growth rate is maximized when ribosomes work at full capacity, explains the linear relation between growth rate and the ribosome fraction of the proteome and defines the maximal possible growth rate.

View Article and Find Full Text PDF

The economy of protein production is central to cell physiology, being intimately linked with cell division rate and cell size. Attempts to model cellular physiology are limited by the scarcity of experimental data defining the molecular processes limiting protein expression. Here, we distinguish the relative contribution of gene transcription and protein translation to the slower proliferation of budding yeast producing excess levels of unneeded proteins.

View Article and Find Full Text PDF

Genome instability is a hallmark of cancer. Common fragile sites (CFSs) are specific regions in the human genome that are sensitive to replication stress and are prone to genomic instability in different cancer types. Here we molecularly cloned a new CFS, FRA11H, in 11q13.

View Article and Find Full Text PDF

Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear.

View Article and Find Full Text PDF