98%
921
2 minutes
20
Friction is a crucial factor affecting air accident occurrence on landing or taking off. Tire-runway friction directly contributes to aircraft stability on land. Therefore, an accurate friction estimation is a rising issue for all stakeholders. This paper summarizes the existing measurement methods, and a multi-sensor information fusion scheme is proposed to estimate the friction coefficient between the tire and the runway. Acoustic sensors, optical sensors, tread sensors, and other physical sensors form a sensor system that is used to measure friction-related parameters and fuse them through a neural network. So far, many attempts have been made to link the ground friction coefficient with the aircraft braking friction coefficient. The models that have been developed include the International Runway Friction Index (IRFI), Canada Runway Friction Index (CRFI), and other fitting models. Additionally, this paper attempts to correlate the output of the neural network (estimated friction coefficient) with the correlation model to predict the friction coefficient between the tire and the runway when the aircraft brakes. The sensor system proposed in this paper can be regarded as a mobile weather-runway-tire system, which can estimate the friction coefficient by integrating the runway surface conditions and the tire conditions, and fully consider their common effects. The role of the correlation model is to convert the ground friction coefficient to the grade of the aircraft braking friction coefficient and the information is finally reported to the pilots so that they can make better decisions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412354 | PMC |
http://dx.doi.org/10.3390/s20143886 | DOI Listing |
PLoS One
September 2025
Department of Industrial Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia.
The increasing concern over environmental pollution from brake dust and the adverse impacts of conventional brake pad materials, such as metallic, semi-metallic, and ceramic composites, has prompted the exploration of more sustainable alternatives. Traditional brake pads release harmful non-exhaust emissions that contribute to air pollution and wear down quickly, posing both environmental and operational challenges. This study investigates the development and performance evaluation of polymer friction composites enhanced with natural friction modifiers sourced from agricultural waste materials like walnut shell, coconut shell, and groundnut shell powders.
View Article and Find Full Text PDFJ Texture Stud
October 2025
College of Automation Engineering, Northeast Electric Power University, Jilin, China.
Astringency is a complex oral sensation characterized by dryness and constriction in the mouth. It is typically induced by polyphenol-rich foods and beverages such as wine and tea. The quantitative assessment of astringency intensity has become a prominent research focus in the food science field.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Near-zero wear on engineering steel surfaces is a promising solution to extend the service life of mechanical equipment. However, most existing strategies offer only limited low wear under particular conditions and friction pairs. To address this, we design a polymer-based proton ionic liquid (PPILs) lubricant, leveraging the proton exchange between polyethylenimine, which is rich in active nitrogen groups, and bis(2-ethylhexyl) phosphate.
View Article and Find Full Text PDFACS Nano
September 2025
College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China.
The confining walls made by 2D materials are often considered solid boundary conditions in studies of fluid transport through nanochannels, while the atomically thin walls inherently exhibit thermal fluctuations at a finite temperature. In this work, we investigate the solid-liquid interfacial friction properties of water confined within flexible nanochannels using machine-learning-potential molecular dynamics. Surprisingly, we find that the friction coefficient (λ) increases with lateral size in the flexible nanochannels, following a linear relationship with 1/, which is absent in rigid channels.
View Article and Find Full Text PDFLangmuir
September 2025
School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, P. R. China.
Understanding the mechanism of action of graphene oxide (GO)-based lubrication materials is of great significance to effectively suppress the surface damage accumulation of bearing steel during service. However, GO typically exhibits weak interfacial adsorption and poor dispersion stability, severely limiting its ability to form a dynamic tribofilm during friction. In this study, we synthesized an efficient lubricant, oleylamine-grafted chlorinated graphene (OA/Cl-GO), using GO as the carrier and introducing lipophilic terminal groups through chlorination and interfacial covalent modification.
View Article and Find Full Text PDF