Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To understand the mechanism underlying the regression of cardiac hypertrophy, we investigated the pathological changes after isoproterenol (ISO) withdrawal in ISO-induced cardiomyopathy models in rats and neonatal cardiomyocytes. Cardiac hypertrophy was induced in rats by two weeks of ISO administration; however, the hypertrophy did not regress after three weeks of natural maintenance after ISO administration was withdrawn (ISO-wdr group). The remaining hypertrophy in the ISO-wdr group was accompanied by a sustained increase in the level of phosphorylated Ca/calmodulin-dependent protein kinase II (p-CaMKII). Additionally, the increased expression levels of histone deacetylase 4 (HDAC4) and the Ca1.2 channel and amounts of CaMKII bound with HDAC4 and Ca1.2 were not recovered in the ISO-wdr group. The results in cardiomyocyte models were similar to those seen in rat models. Losartan, metoprolol or amlodipine neither ameliorated the increase in atrial natriuretic peptide nor inhibited the increase in p-CaMKII and bound CaMKII. In contrast, autocamtide-2-related inhibitor peptide, a CaMKII inhibitor, reduced these increases. This study investigated the phosphorylation status of CaMKII after hypertrophic stimulus was withdrawn for the first time and proposed that CaMKII as well as its complexes with Ca1.2 could be potential targets to achieve effective regression of cardiac hypertrophy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2020.07.001DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
16
iso-wdr group
12
regression cardiac
8
iso administration
8
hdac4 ca12
8
camkii
6
hypertrophy
6
sustained increased
4
increased camkii
4
camkii phosphorylation
4

Similar Publications

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.

View Article and Find Full Text PDF

Background MRI-derived arrhythmogenic substrate, including late gadolinium enhancement (LGE) and extracellular volume fraction (ECV), is indicative of sudden cardiac death (SCD) risk in nonischemic dilated cardiomyopathy (DCM). The relative prognostic value of LGE and ECV remains unclear. Purpose To evaluate the performance of LGE and T1 mapping in predicting SCD in patients with DCM and to explore clinical implementation.

View Article and Find Full Text PDF

Heart failure (HF) is a complex clinical syndrome marked by impaired contractility, adverse remodeling, and dysregulated intracellular signaling. Protein kinases are central regulators of cardiac function, modulating calcium handling, gene transcription, hypertrophy, and apoptosis through phosphorylation of target proteins. In HF, chronic activation of kinases such as protein kinase A, protein kinase C, calcium/calmodulin-dependent kinase II, mitogen-activated protein kinases, protein kinase B, and Rho-associated protein kinase contributes to progressive cardiac dysfunction.

View Article and Find Full Text PDF

Chronic stress-induced cardiac hypertrophy remains a critical precursor to heart failure, with current therapies limited by incomplete mechanistic targeting. Cyclin-dependent kinases (CDKs), pivotal regulators of cell cycle and stress signaling, are emerging therapeutic targets in cardiovascular pathologies. Using bioinformatics analysis of human hypertrophic cardiomyopathy datasets (GSE5500, GSE136308) and a murine transverse aortic constriction (TAC) model, we investigated the therapeutic effects of the CDK inhibitor R547 (10 mg/kg, intraperitoneal every 3 days) on pressure overload-induced cardiac remodeling.

View Article and Find Full Text PDF