Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Layer-stacking structures are very common in two-dimensional covalent organic frameworks (2D COFs). While their structures are normally determined under solvent-free conditions, the structures of solvated 2D COFs are largely unexplored. We report herein the in situ determination of solvated 2D COF structures, which exhibit an obvious difference as compared to that of the same COF under dried state. Powder X-ray diffraction (PXRD) data analyses, computational modeling, and Pawley refinement indicate that the solvated 2D COFs experience considerable interlayer shifting, resulting in new structures similar to the staggered AB stacking, namely, quasi-AB-stacking structures, instead of the AA-stacking structures that are usually observed in the dried COFs. We attribute this interlayer shifting to the interactions between COFs and solvent molecules, which may weaken the attraction strength between adjacent COF layers. Density functional theory (DFT) calculations confirm that the quasi-AB stacking is energetically preferred over the AA stacking in solvated COFs. All four highly crystalline 2D COFs examined in the present study exhibit considerable interlayer shifting upon solvation, implying the universality of the solvent-induced interlayer stacking rearrangement in 2D COFs. These findings prompt re-examination of the 2D COF structures in solvated state and suggest new opportunities for the applications of COF materials under wet conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c03691DOI Listing

Publication Analysis

Top Keywords

interlayer shifting
16
solvated cofs
12
two-dimensional covalent
8
covalent organic
8
organic frameworks
8
structures
8
cofs
8
structures solvated
8
cof structures
8
considerable interlayer
8

Similar Publications

Graphene layers can assemble in two shifted metastable positions per interface, leading to eight possible structural arrangements in five-layer graphene, six of which correspond to distinct periodic crystals. These polytypes exhibit diverse symmetries, interlayer electronic hybridization, van der Waals adhesion, and optical responses. Arrangements lacking inversion [I] and mirror [M] symmetries host intrinsic polarizations, while those with sufficiently flat electronic bands display orbital magnetization, unconventional superconductivity, and anomalous fractional quantum Hall states.

View Article and Find Full Text PDF

Chemical doping plays a pivotal role in tailoring the charge transport properties of two-dimensional transition metal dichalcogenides for nanoelectronic and optoelectronic applications. In this study, we examine the influence of chlorine doping on the local electronic structure and ultrafast electron dynamics of chemical vapor deposition (CVD)-grown monolayer MoS. Raman and photoluminescence (PL) spectroscopy, supported by X-ray photoelectron spectroscopy (XPS), reveal spectral shifts and core-level modifications consistent with n-type doping induced by Cl atoms.

View Article and Find Full Text PDF

Copper foils as substrates for growing nitrogen-doped carbon nanotubes.

Nanotechnology

September 2025

División de Materiales Avanzados, IPICYT, Camino a presa San José 2055, Lomas 4a sección, San Luis Potosí 78216, Mexico.

Hybrid Fe- and Cu-based nanoparticles (NPs) embedded in a variety of graphitic carbon matrices were produced using an aerosol-assisted chemical vapor deposition method. A thin copper foil was used as the substrate, and ferrocene and benzylamine were pyrolyzed at temperatures ranging from 750 °C to 950 °C. Three types of hybrid materials were obtained: (1) FeC and Cu NPs encapsulated in graphitic carbon at 750 °C, (2) nitrogen-doped multiwalled carbon nanotubes with a high density of NPs attached to their surface at 800 °C, and (3) a large tubular-defective fiber-type material surrounded by NPs above 850 °C.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease is a progressive neurodegenerative condition characterized by the gradual deterioration of cognitive functions. Early identification of functional brain changes is crucial for timely diagnosis and effective intervention. This study employs multiplex network analysis to examine alterations in brain connectivity topology associated with Alzheimer's Disease, to identify early biomarkers and uncover potential therapeutic targets.

View Article and Find Full Text PDF

Interfacial charge transfer at electrocatalyst/semiconductor (EC/SC) junctions is central to the performance of photo(electro)catalysts, yet the influence of the reactive environment on these processes remains poorly understood. This is particularly the case for unburied EC/SC junctions, such as EC nanoparticles anchored on a SC (np-EC/SC), where reacting molecules readily access the EC surface sites and the np-EC/SC interfaces. Herein, we uncover a dynamic, chemically driven mechanism by which the local reaction environment modulates charge transfer at Pt/p-Si interfaces under solar water splitting conditions.

View Article and Find Full Text PDF