98%
921
2 minutes
20
To further clarify the key stage and microorganisms responsible for ammonia inhibition instability, three sequential batch experiments were conducted with various ammonia concentrations and different exposure modes. Acetate metabolism was most sensitive to ammonia, however, after continuous ammonia exposure, acetate metabolism was well restored by a shift in dominant microorganisms. In contrast, the metabolism of longer-chain volatile fatty acids (LCVFAs, C-C) was only inhibited under a high ammonia concentration (≥6000 mg/L), however, once inhibited, continuous exposure neither restored the abundance of functional microbes nor induced new microorganisms to perform metabolic functions. Therefore, LCVFA metabolism was the key stage responsible for process instability under ammonia stress. Moreover, the deterioration of LCVFA metabolism was caused by the inhibition of syntrophic acetogenic bacteria (SAB) induced by total ammonia nitrogen, rather than the feedback inhibition from methanogenesis. That is, SAB were the key microorganisms involved in process instability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.123768 | DOI Listing |
Metab Brain Dis
September 2025
Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu, 1-1 Yanagido, 501-1194, Japan.
Identifying the risk of overt hepatic encephalopathy (OHE) in geriatric patients with cirrhosis remains challenging. This study aimed to investigate the independent factors for OHE development in geriatric cirrhosis and to establish a simple scoring model to identify individuals at risk for OHE. We conducted a retrospective review of geriatric patients with cirrhosis aged ≥ 80 years who were admitted between April 2006 and November 2022.
View Article and Find Full Text PDFLett Appl Microbiol
September 2025
U.S. National Poultry Research Center, USDA-ARS, Athens, GA 30605, USA.
This study evaluated if acidifying agents used for ammonia control and pathogen reduction in poultry houses have a deleterious effect on the survival and growth of Salmonella Infantis. Changes in antimicrobial resistance (AMR) and pESI plasmid gene composition were also investigated. When S.
View Article and Find Full Text PDFSmall
September 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia.
Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.
View Article and Find Full Text PDFChemSusChem
September 2025
Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA.
Spent liquors of biomass pretreatment provide a source for renewable chemical production. These liquors require treatment before being discharged; otherwise, they negatively impact the environment. Herein, spent liquors from aqueous ammonia pretreatment of poplar wood are characterized for phenolic content via liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy.
View Article and Find Full Text PDFAnim Sci J
September 2025
Department of Zotechnics and Animal Nutrition, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey.
The aim of this experiment was to determine the effects of walnut (Juglans regia L.) green husk (WGH) supplemented to ration on rumen fermentation by in vitro gas production technique. WGH was supplemented at different ratios (0%, 2%, 4%, 6%, 8%, and 10%) to the total mixture ration formed from 80%/20% roughage/concentrate feed.
View Article and Find Full Text PDF