98%
921
2 minutes
20
Recent years have seen an increasing interest in quantum chaos and related aspects of spatially extended systems, such as spin chains. However, the results are strongly system dependent: generic approaches suggest the presence of many-body localization, while analytical calculations for certain system classes, here referred to as the "self-dual case," prove adherence to universal (chaotic) spectral behavior. We address these issues studying the level statistics in the vicinity of the latter case, thereby revealing transitions to many-body localization as well as the appearance of several nonstandard random-matrix universality classes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.101.052201 | DOI Listing |
Chaos
September 2025
School of Engineering, University of Applied Sciences of Western Switzerland HES-SO, CH-1950 Sion, Switzerland.
We investigate species-rich mathematical models of ecosystems. While much of the existing literature focuses on the properties of equilibrium fixed-points, persistent dynamics (e.g.
View Article and Find Full Text PDFChaos
September 2025
School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China.
Synaptic plasticity is of great significance for understanding the leaning and memory processes in different brain regions since it determines the synchronized firing activities of neurons. A volatility-switchable memristor-coupled heterogeneous neuron model is proposed to explore the effects of the synaptic plasticity on the synchronous dynamics of coupled neurons in different brain regions. With the increment of the non-volatility, the critical coupling strength of synchronization between two heterogeneous neurons decreases in a power-law relationship with the character parameter of the memristor.
View Article and Find Full Text PDFEntropy (Basel)
August 2025
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Simulating nonlinear classical dynamics on a quantum computer is an inherently challenging task due to the linear operator formulation of quantum mechanics. In this work, we provide a systematic approach to alleviate this difficulty by developing an explicit quantum algorithm that implements the time evolution of a second-order time-discretized version of the Lorenz model. The Lorenz model is a celebrated system of nonlinear ordinary differential equations that has been extensively studied in the contexts of climate science, fluid dynamics, and chaos theory.
View Article and Find Full Text PDFEntropy (Basel)
August 2025
School of Electronic Information, Zhongshan Institute, University of Electronic Science and Technology of China, Zhongshan 528402, China.
The rapid development of Internet technology, while providing convenient services for users, has also aroused deep concern among the public about the issue of privacy leakage during image data transmission. To address this situation, this article proposes a color image encryption algorithm based on RNA extended dynamic coding and quantum chaos (CIEA-RQ). This algorithm significantly improves the ability of the system to withstand cryptographic attacks by introducing RNA extended dynamic encoding with 384 encoding rules.
View Article and Find Full Text PDFEntropy (Basel)
August 2025
Research Center for Astronomy and Applied Mathematics of the Academy of Athens, Soranou Efessiou 4, GR-11527 Athens, Greece.
We study in detail the critical points of Bohmian flow, both in the inertial frame of reference (Y-points) and in the frames centered at the moving nodal points of the guiding wavefunction (X-points), and analyze their role in the onset of chaos in a system of two entangled qubits. We find the distances between these critical points and a moving Bohmian particle at varying levels of entanglement, with particular emphasis on the times at which chaos arises. Then, we find why some trajectories are ordered, without any chaos.
View Article and Find Full Text PDF