98%
921
2 minutes
20
Nucleotide excision repair associated diseases comprise overlapping phenotypes and a wide range of outcomes. The early stages still remain under-investigated and underdiagnosed, even although an early recognition of the first symptoms is of utmost importance for appropriate care and genetic counseling. We systematically collected clinical and molecular data from the literature and from newly diagnosed NER patients with neurological impairment, presenting clinical symptoms before the age of 12 months, including foetal cases. One hundred and eighty-five patients were included, 13 with specific symptoms during foetal life. Arthrogryposis, microcephaly, cataracts, and skin anomalies are the most frequently reported signs in early subtypes. Non ERCC6/CSB or ERCC8/CSA genes are overrepresented compared to later onset cohorts: 19% patients of this cohort presented variants in ERCC1, ERCC2/XPD, ERCC3/XPB or ERCC5/XPG. ERCC5/XPG is even the most frequently involved gene in foetal cases (10/13 cases, [4/7 families]). In this cohort, the mutated gene, the age of onset, the type of disease, severe global developmental delay, IUGR and skin anomalies were associated with earlier death. This large survey focuses on specific symptoms that should attract the attention of clinicians towards early-onset NER diagnosis in foetal and neonatal period, without waiting for the completeness of classical criteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cge.13798 | DOI Listing |
J Org Chem
September 2025
Johns Hopkins University, Department of Chemistry, 3400 N. Charles St., Baltimore, Maryland 21218, United States.
Base excision repair (BER) is a DNA repair pathway responsible for protecting the genome against modified nucleotides. DNA polymerase β (Pol β) participates in this process by removing the remnants of a damaged nucleotide and filling in the resulting gap. Pol β is overexpressed in some cancers and is synthetic lethal in cells deficient in BRCA1/2, providing additional impetus for identifying inhibitors of this enzyme.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address:
The nucleotide excision repair (NER) pathway in Mycobacterium tuberculosis (Mtb) is important for DNA damage repair and bacterial survival under stress, yet specific inhibitors targeting its components remain scarce. Here, we targeted the UvrB protein, a central component of the Mtb UvrABC NER pathway, and identified novel small molecule inhibitors against its nucleotide binding domain (NBD). Using in silico structure-based screening involving the Maybridge library (~54,000 compounds), Molecular dynamics (MD) simulations, and Biolayer interferometry (BLI), we identified four potent inhibitors: SPB08143, RJC04069, NRB00936, and DP00786 with IC50 values of 9.
View Article and Find Full Text PDFJ Med Chem
September 2025
Nanozyme Laboratory in Zhongyuan, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450001, China.
Cisplatin resistance remains a major clinical challenge in cancer therapy, often driven by the upregulation of DNA repair pathways. Here, we present a dual-functional nanotherapeutic system (HFn-NERiP-Pt(IV)) combining a glutathione-responsive PROTAC (NERiP) with a ferritin nanocarrier for targeted ERCC1/XPF degradation and enhanced platinum delivery. NERiP selectively degrades ERCC1/XPF upon release in reductive tumor environments, suppressing nucleotide excision repair and enhancing platinum cytotoxicity.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
September 2025
Department of Urology, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, P.R. China.
Background: A significant challenge in bladder cancer treatment is primary chemoresistance, in which cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a pivotal role. While the contributions of CAFs to tumor progression and drug resistance are well established, the precise molecular mechanisms by which they induce chemoresistance remain unclear. A comprehensive understanding of the effect of TME modulation-particularly through CAFs-on the chemotherapeutic response is crucial for developing effective strategies to overcome chemoresistance and improve patient survival.
View Article and Find Full Text PDFEnviron Int
August 2025
Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, PR China; Institute of Preventive Medicine, Dali University, Dali, Yunnan, PR China. Electronic address:
Cadmium (Cd), a known food pollutant, has been demonstrated in numerous studies to induce neurological damage. The pathogenic mechanisms of cadmium chloride (CdCl) and cadmium sulfate (CdSO) are generally attributed to the induction of oxidative stress and apoptosis. Nevertheless, the extent to which these two cadmium compounds exhibit differential concentration-dependent neurotoxic effects, as well as the specific underlying mechanisms involved, remain to be elucidated.
View Article and Find Full Text PDF