Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aim of this study was to investigate the gelling behavior of proteins in bio-tofu (soymilk-cow milk mixture gel) coagulated by microbial transglutaminase (MTGase) combined with lactic acid bacteria (LAB). It was shown that MTGase (3.0 U/g protein) treatment of soymilk-cow milk mixture (SCMM) could not induce gelation at 43℃ even if the incubation was lasting 4 h. However, the concomitant use of LAB (0.025 UC/L) along with MTGase could induce the formation of denser and finer gel network with smaller pores and higher storage modulus (G') compared to SCMM treated with only LAB. Electrophoresis and mass spectrometry results indicated that LAB improve MTGase-dependent polymerization of proteins. In addition, this study investigates the effect of LAB and MTGase treatment on the rheology behavior of the derived gel products. In general, the use of both bio-coagulants for the manufacture of a mixed protein gel, might open new horizons in the field of novel nutrional and functional foods.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2020.109200DOI Listing

Publication Analysis

Top Keywords

gelling behavior
8
coagulated microbial
8
microbial transglutaminase
8
combined lactic
8
lactic acid
8
acid bacteria
8
soymilk-cow milk
8
milk mixture
8
lab mtgase
8
lab
5

Similar Publications

The rheological behavior of ulvan/kappa-carrageenan, ulvan/funoran and ulvan/gelatin mixtures is investigated using dynamic rheology to provide insights into the phase aggregation behavior of each ulvan-based network. The average molecular weight of extracted ulvan was between 436 and 573 kDa, and contained varying amounts of sulfate (10.3-28.

View Article and Find Full Text PDF

Inhibition mechanisms of xanthan gum on high-dose gallic acid-induced functional deterioration of myofibrillar protein: Focusing on gelling and emulsification behaviors.

Carbohydr Polym

November 2025

Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300134, China. Electronic address: wzj

For purpose of overcoming the negative impact of high-dose phenols on meat quality, xanthan gum (XG), a natural anionic polysaccharide, was employed to prevent the undesirable interaction between myofibrillar protein (MP) and gallic acid (GA, 150 μmol/g) and ameliorate the gel and emulsification characteristics of MP. XG dose-dependently alleviated the structural damage of MP caused by GA and reduced protein aggregation, manifested as the decrease in surface hydrophobicity, turbidity and aggregate size (p < 0.05) and increase in α-helix content and intrinsic fluorescence.

View Article and Find Full Text PDF

Barley is an underutilized crop with considerable potential for enhancing food security and sustainability. Hull-less barley is a nutrient-dense cereal grain rich in β-glucan and dietary fiber; however, its broader application in food systems is constrained by the presence of antinutritional factors and certain functional limitations that affect processing and bioavailability. This study investigated the effects of acid (1% HCl) and alkali (1% NaOH) treatments on two hull-less barley varieties (PL 891 and BHS 352), with emphasis on nutritional composition, antinutrient reduction, functional behavior, thermal transitions, and microstructural attributes.

View Article and Find Full Text PDF

The aim of the study was to explore the potential of human plasma-derived exosomal gel as a carrier for transdermal drug delivery. Exosomes were isolated from human plasma through a combination of ultracentrifugation and dialysis techniques. Methotrexate (MTX), a weak acid drug with log P 1.

View Article and Find Full Text PDF

Engineered nanoparticles from egg and milk proteins: A review of aggregation, gelation, colloidal behaviors and delivery systems.

Int J Biol Macromol

August 2025

Molecular Assembly Laboratory, School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia. Electronic address:

The development of ideal materials for functional nanostructures remains a central challenge in designing efficient delivery systems for food, nutraceutical, and pharmaceutical applications. Egg and milk proteins are renewable, biodegradable, and biocompatible macromolecules with unique colloidal and structural features. Key proteins such as ovalbumin, ovotransferrin, β-lactoglobulin, α-lactalbumin, and caseins offer excellent gelling, emulsifying, and stabilizing abilities, making them well-suited for engineering diverse nanostructures.

View Article and Find Full Text PDF