Exercise Training Impacts Skeletal Muscle Clock Machinery in Prediabetes.

Med Sci Sports Exerc

Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA.

Published: October 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: Disruption of the skeletal muscle molecular clock leads to metabolic disease, whereas exercise may be restorative, leading to improvements in metabolic health. The purpose of this study was to evaluate the effects of a 12-wk exercise intervention on skeletal muscle molecular clock machinery in adults with obesity and prediabetes, and determine whether these changes were related to exercise-induced improvements in metabolic health.

Methods: Twenty-six adults (age, 66 ± 4.5 yr; body mass index (BMI), 34 ± 3.4 kg·m; fasting plasma glucose, 105 ± 15 mg·dL) participated in a 12-wk exercise intervention and were fully provided isoenergetic diets. Body composition (dual x-ray absorptiometry), abdominal adiposity (computed tomography scans), peripheral insulin sensitivity (euglycemic-hyperinsulinemic clamp), exercise capacity (maximal oxygen consumption), and skeletal muscle molecular clock machinery (vastus lateralis biopsy) were assessed at baseline and after intervention. Gene and protein expression of skeletal muscle BMAL1, CLOCK, CRY1/2, and PER 1/2 were measured by quantitative real-time polymerase chain reaction and Western blot, respectively.

Results: Body composition (BMI, dual x-ray absorptiometry, computed tomography), peripheral insulin sensitivity (glucose disposal rate), and exercise capacity (maximal oxygen consumption) all improved (P < 0.005) with exercise training. Skeletal muscle BMAL1 gene (fold change, 1.62 ± 1.01; P = 0.027) and PER2 protein expression (fold change, 1.35 ± 0.05; P = 0.02) increased, whereas CLOCK, CRY1/2, and PER1 were unchanged. The fold change in BMAL1 correlated with post-glucose disposal rate (r = 0.43, P = 0.044), BMI (r = -0.44, P = 0.042), and body weight changes (r = -0.44, P = 0.039) expressed as percent delta.

Conclusions: Exercise training impacts skeletal muscle molecular clock machinery in a clinically relevant cohort of adults with obesity and prediabetes. Skeletal muscle BMAL1 gene expression may improve insulin sensitivity. Future studies are needed to determine the physiological significance of exercise-induced alterations in skeletal muscle clock machinery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494535PMC
http://dx.doi.org/10.1249/MSS.0000000000002368DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
36
clock machinery
20
muscle molecular
16
molecular clock
16
exercise training
12
insulin sensitivity
12
muscle bmal1
12
fold change
12
skeletal
9
muscle
9

Similar Publications

Aims: Skeletal muscle energetic augmentation might be a mechanism via which intravenous iron improves symptoms in heart failure, but no direct measurement of intrinsic mitochondrial function has been performed to support this notion. This molecular substudy of the FERRIC-HF II trial tested the hypothesis that ferric derisomaltose (FDI) would improve electron transport chain activity, given its high dependence on iron-sulfur clusters which facilitate electron transfer during oxidative phosphorylation.

Methods And Results: Vastus lateralis skeletal muscle biopsies were taken before and 2 weeks after randomization.

View Article and Find Full Text PDF

Background: This study explores how relative skeletal muscle mass is associated with the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and the remission of baseline MASLD in a community-based population cohort.

Methods: The study included 1,544 participants with an average age of 58 years. All participants underwent baseline and follow-up assessments in 2015 or 2016.

View Article and Find Full Text PDF

Effects of structured orofacial muscle rehabilitation training on the recovery of facial expression muscles in patients with skeletal class II malocclusion after orthognathic surgery.

Oral Surg Oral Med Oral Pathol Oral Radiol

August 2025

Chief Nurse of Dental Science, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China. Electronic address:

Objective: This study aimed to investigate the effects of structured orofacial muscle rehabilitation training (OMRT) on the recovery of facial expression muscles in patients with skeletal Class II malocclusion after orthognathic surgery.

Study Design: This randomized controlled trial enrolled 56 skeletal Class II malocclusion patients who underwent orthognathic surgery. The intervention group received structured OMRT, while the control group received standard postoperative care.

View Article and Find Full Text PDF

Skeletal Muscle Alpha Actin (ACTA1) Acetylation Enhances Myosin Binding and Increases Calcium Sensitivity.

Biophys Rep (N Y)

September 2025

Cellular Signal Transduction in the Cardiovascular System COBRE, University of Nevada Reno, Reno, NV 89557; Department of Nutrition, University of Nevada Reno, Reno, NV 89557. Electronic address:

Skeletal muscle alpha actin (ACTA1) is important for muscle contraction and relaxation, with historical studies focused on ACTA1 mutations in muscle dysfunction. Proteomics reports have consistently observed that actin, including ACTA1, is acetylated at multiple lysine sites. However, few reports have studied the effects of actin acetylation on cellular function, and fewer have examined ACTA1 acetylation on skeletal muscle function.

View Article and Find Full Text PDF

Integrative physiology of skeletal muscle for maintaining cognitive health.

J Physiol

September 2025

Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA.

Cognitive decline and physical impairment are often linked with ageing, contributing to declines in health span and loss of independence in older adults. Pathological cognitive decline with age is largely considered to be a brain-centric challenge. However, recent findings have begun to challenge this paradigm as the health of peripheral systems, namely skeletal muscle, predict cognitive decline associated with Alzheimer's disease (AD).

View Article and Find Full Text PDF