MAX Functions as a Tumor Suppressor and Rewires Metabolism in Small Cell Lung Cancer.

Cancer Cell

Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA. Electronic address:

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Small cell lung cancer (SCLC) is a highly aggressive and lethal neoplasm. To identify candidate tumor suppressors we applied CRISPR/Cas9 gene inactivation screens to a cellular model of early-stage SCLC. Among the top hits was MAX, the obligate heterodimerization partner for MYC family proteins that is mutated in human SCLC. Max deletion increases growth and transformation in cells and dramatically accelerates SCLC progression in an Rb1/Trp53-deleted mouse model. In contrast, deletion of Max abrogates tumorigenesis in MYCL-overexpressing SCLC. Max deletion in SCLC resulted in derepression of metabolic genes involved in serine and one-carbon metabolism. By increasing serine biosynthesis, Max-deleted cells exhibit resistance to serine depletion. Thus, Max loss results in metabolic rewiring and context-specific tumor suppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7363581PMC
http://dx.doi.org/10.1016/j.ccell.2020.04.016DOI Listing

Publication Analysis

Top Keywords

small cell
8
cell lung
8
lung cancer
8
sclc max
8
max deletion
8
max
6
sclc
6
max functions
4
functions tumor
4
tumor suppressor
4

Similar Publications

Usnic acid, a compound from Usneae Filum, has shown notable antitumor effects. Nevertheless, the mechanism of its anti-NSCLC action remains incompletely elucidated. This study used metabolomics, network pharmacology, molecular docking, and dynamics simulation to investigate usnic acid's potential mechanism on NSCLC utilizing A549 cell samples.

View Article and Find Full Text PDF

Solvent-Directed Self-Assembly of Sorafenib into Spherical Particles for Enhanced Anticancer Efficacy.

Nano Lett

September 2025

KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.

Sorafenib, a clinically approved multityrosine kinase inhibitor, exhibits poor aqueous solubility, which limits its bioavailability and therapeutic efficacy. In this study, we introduce a solvent-directed self-assembly strategy to modulate the nanostructure of sorafenib without the use of external carriers or complex formulation techniques. In pure water, sorafenib forms large lamellar aggregates, whereas in 30% methanol-water mixtures, it self-assembles into uniform spherical particles approximately 450 nm in diameter.

View Article and Find Full Text PDF

Dynamic and precise electromagnetic levitation of single cells.

Proc Natl Acad Sci U S A

September 2025

Molecular Imaging Program at Stanford, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304.

The biophysical properties of single cells are crucial for understanding cellular function and behavior in biology and medicine. However, precise manipulation of cells in 3-D microfluidic environments remains challenging, particularly for heterogeneous populations. Here, we present "Electro-LEV," a unique platform integrating electromagnetic and magnetic levitation principles for dynamic 3-D control of cell position during separation.

View Article and Find Full Text PDF

Background: Reflectance confocal microscopy (RCM) criteria for in vivo diagnosis of unperturbed basal cell carcinoma (BCC) lesions have been validated and studies have reported high diagnostic sensitivity. However, a paucity of data remains regarding preservation or changes in RCM features after biopsy or treatment.

Objective: Prospectively image biopsy proven superficial BCC (sBCC) with RCM at baseline and 12 weeks post-treatment to determine clearance and identify any associated RCM features.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) exhibits a narrow species tropism, causing robust infections only in humans and experimentally inoculated chimpanzees. While many host factors and restriction factors are known, many more likely remain unknown, which has limited the development of mouse or other small animal models for HCV. One putative restriction factor, the black flying fox orthologue of receptor transporter protein 4 (RTP4), was previously shown to potently inhibit viral genome replication of several ER-replicating RNA viruses.

View Article and Find Full Text PDF