Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Alzheimer's disease (AD) is the most common cause of dementia. The neuropathological features of AD include amyloid-β (Aβ) deposition and hyperphosphorylated tau accumulation. Although several clinical trials have been conducted to identify a cure for AD, no effective drug or treatment has been identified thus far. Recently, the potential use of non-pharmacological interventions to prevent or treat AD has gained attention. Low-dose ionizing radiation (LDIR) is a non-pharmacological intervention which is currently being evaluated in clinical trials for AD patients. However, the mechanisms underlying the therapeutic effects of LDIR therapy have not yet been established. In this study, we examined the effect of LDIR on Aβ accumulation and Aβ-mediated pathology. To investigate the short-term effects of low-moderate dose ionizing radiation (LMDIR), a total of 9 Gy (1.8 Gy per fraction for five times) were radiated to 4-month-old 5XFAD mice, an Aβ-overexpressing transgenic mouse model of AD, and then sacrificed at 4 days after last exposure to LMDIR. Comparing sham-exposed and LMDIR-exposed 5XFAD mice indicated that short-term exposure to LMDIR did not affect Aβ accumulation in the brain, but significantly ameliorated synaptic degeneration, neuronal loss, and neuroinflammation in the hippocampal formation and cerebral cortex. In addition, a direct neuroprotective effect was confirmed in SH-SY5Y neuronal cells treated with Aβ (2 μM) after single irradiation (1 Gy). In BV-2 microglial cells exposed to Aβ and/or LMDIR, LMDIR therapy significantly inhibited the production of pro-inflammatory molecules and activation of the nuclear factor-kappa B (NF-κB) pathway. These results indicate that LMDIR directly ameliorated neurodegeneration and neuroinflammation in vivo and in vitro. Collectively, our findings suggest that the therapeutic benefits of LMDIR in AD may be mediated by its neuroprotective and anti-inflammatory effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279400PMC
http://dx.doi.org/10.3390/ijms21103678DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
12
neuroprotective anti-inflammatory
8
anti-inflammatory effects
8
effects low-moderate
8
low-moderate dose
8
dose ionizing
8
alzheimer's disease
8
clinical trials
8
aβ accumulation
8
5xfad mice
8

Similar Publications

Age-related cataract (ARC) represents a major global cause of visual impairment, with ultraviolet B (UVB) radiation recognized as a primary contributor to oxidative damage in the lens. FOXO3, a key regulator of aging, apoptosis, and oxidative stress-induced cell death, was investigated for its role and regulatory mechanisms in UVB-induced oxidative stress using human lens epithelial cells (HLECs). A progressive decrease in FOXO3 protein expression was observed in the lens capsules across various stages of cataract progression, as well as in UVB-exposed animal models and UVB-treated HLECs.

View Article and Find Full Text PDF

Purpose: To analyze stabilization results using various standard and accelerated corneal cross-linking (CXL) protocols in patients younger than 18 years.

Methods: This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines. A bibliographic search was carried out based on PubMed and Scopus data, with the last being performed in December 2024.

View Article and Find Full Text PDF

Living organisms have been exposed to ionizing radiation throughout Earth's 4-billion-year history, with humans presently receiving about 2 mSv of ionizing radiation every year. While radiation generates reactive oxygen and nitrogen species (ROS and RNS), organisms have evolved mechanisms to neutralize these toxic molecules and utilize them as signal transducers. High doses of radiation are harmful, but low doses are seemingly essential, and moderate doses can provide benefits-a phenomenon known as hormesis.

View Article and Find Full Text PDF

As hyperpigmentation can worsen with exposure to ultraviolet (UV) and visible light (VL), sunscreens with well-balanced UVB/UVA protection and VL-blocking pigments are recommended. Assessing efficiency against VL-induced pigmentation is then mandatory. Recently, an in vivo pigmentation assessment allowing a VL protection factor (pVL-PF) determination, and an in vitro predictive method based on transmittance measures were introduced.

View Article and Find Full Text PDF

Bactericidal mechanisms of intense pulsed light against Salmonella Enteritidis on green Sichuan pepper.

Food Res Int

November 2025

School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China. Electronic address:

Intense pulsed light (IPL) is an emerging surface antimicrobial technology characterized by prominent efficiency but the performance in the decontamination of granular foods is yet to be improved. Using S. Enteritidis as a model bacterium, this article attempted to resolve the confusion on bactericidal mechanism of IPL treatment on spice products.

View Article and Find Full Text PDF