98%
921
2 minutes
20
Neural interactions between sensorimotor integration mechanisms play critical roles in voice motor control. We investigated how high-definition transcranial direct current stimulation (HD-tDCS) of the left ventral motor cortex modulates neural mechanisms of sensorimotor integration during voice motor control. HD-tDCS was performed during speech vowel production in an altered auditory feedback (AAF) paradigm in response to upward and downward pitch-shift stimuli. In one experiment, two groups received either anodal or cathodal 2 milliamp (mA) HD-tDCS to the left ventral motor cortex while a third group received sham (placebo) stimulation. In a second experiment, two groups received either 1 mA or 2 mA cathodal HD-tDCS to the left ventral motor cortex. Results of the first experiment indicated that the magnitude of vocal compensation was significantly reduced following anodal and cathodal HD-tDCS only in responses to downward pitch-shift AAF stimuli, with stronger effects associated with cathodal HD-tDCS. However, no such effect was observed following sham stimulation. Results of the second experiment indicate that there is not a differential effect of modulation from 1 mA versus 2 mA. Further, these results replicate the directional finding of the first experiment for vocal compensation in response to downward pitch-shift only. These findings suggest that neurostimulation of the left ventral motor cortex modulates sensorimotor mechanisms underlying voice motor control. We speculate that this effect is associated with the increased contribution of feedforward motor mechanisms, leading to reduced compensatory speech responses to AAF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-020-05832-9 | DOI Listing |
Can Vet J
September 2025
Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn Alabama, USA (Schwartz, Waters, Cole, Forehand, Prim, Rush, Stockler); Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn Alabama, USA (Neto).
A 1-year-old intact Nigerian dwarf nulliparous doe was presented to the Auburn University College of Veterinary Medicine, Large Animal Teaching Hospital in March 2024 for evaluation of recurrent perivulvar masses of 3 mo duration. Transcutaneous ultrasonographic examination of the labia and ventrolateral peri-vulvar area was carried out. This examination revealed a horizontally oriented, bilobed mass on the dorsal left labia majora, and a separate mass located directly below the ventral vulvar commissure.
View Article and Find Full Text PDFBrain
September 2025
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005 Marseille, France.
The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.
View Article and Find Full Text PDFBrain
September 2025
Center for Brain Plasticity and Recovery, Center for Aphasia Research and Rehabilitation, Departments of Neurology and Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, 20057 USA.
The role of the right hemisphere in aphasia recovery has been controversial since the 19th century. Imaging studies have sometimes found increased activation in right hemisphere regions homotopic to canonical left hemisphere language regions, but these results have been questioned due to small sample sizes, unreliable imaging tasks, and task performance confounds that affect right hemisphere activation levels even in neurologically healthy adults. Several principles of right hemisphere language recruitment in aphasia have been proposed based on these studies: that the right hemisphere is recruited primarily by individuals with severe left hemisphere damage, that transcallosal disinhibition results in recruitment of right hemisphere regions homotopic to the lesion, and that increased right hemisphere activation diminishes to baseline levels over time.
View Article and Find Full Text PDFNeurol Ther
September 2025
Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu, China.
Central post-stroke pain (CPSP) is an intractable neuropathic pain syndrome. Dual-target deep brain stimulation (DBS), which integrates sensory thalamic modulation and endogenous analgesic pathways, has emerged as a potential intervention; however, clinical evidence remains scarce. We report a 54-year-old woman who developed right-sided limb paresthesia progressing to persistent right hemibody pain following a left thalamic hemorrhage.
View Article and Find Full Text PDFEur Arch Psychiatry Clin Neurosci
September 2025
Department of Psychiatry, University of Pittsburgh, 121 Meyran Avenue, Pittsburgh, PA, 15213, USA.
Psychotic-like experiences (PLEs) -subclinical experiences or symptoms that resemble psychosis, such as hallucinations and delusional thoughts-often emerge during adolescence and are predictive of serious psychopathology. Understanding PLEs during adolescence is crucial due to co-occurring developmental changes in neural reward systems that heighten the risk for psychotic-related and affective psychopathology, especially in those with a family history of severe mental illness (SMI). We examined associations among PLEs, clinical symptoms, and neural reward function during this critical developmental period.
View Article and Find Full Text PDF