Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigate the encapsulation in hybridosomes®, a type of capsules unique regarding their structure and method of elaboration. Hybridosomes® are made of a single shell of inorganic nanoparticles (~5 nm) crosslinked with a polymer and are easily obtained via spontaneous emulsification in a ternary mixture THF/water/butylated hydroxytoluene (BHT). Our main finding is that an exceptionally high concentration of a hydrophobic model dye can be loaded in the hybridosomes®, up to 0.35 mol.L or equivalently 170 g.L or 450,000 molecules/capsule. The detailed investigation of the encapsulation mechanism shows that the dye concentrates in the droplets during the emulsification step simultaneously with capsule formation. Then it precipitates inside the capsules during the course of solvent evaporation. In vitro fluorescence measurements show that the nano-precipitated cargo can be transferred from the core of the hybridosomes® to the membrane of liposomes. In vivo studies suggest that the dye diffuses through the body during several days. The released dye tends to accumulate in body-fat, while the inorganic nanoparticles remain trapped into the liver and the spleen macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.05.023DOI Listing

Publication Analysis

Top Keywords

inorganic nanoparticles
8
ouzo tool
4
tool elaborate
4
elaborate high-payload
4
high-payload nanocapsules
4
nanocapsules investigate
4
investigate encapsulation
4
hybridosomes®
4
encapsulation hybridosomes®
4
hybridosomes® type
4

Similar Publications

A sensitive smartphone-based method for measuring phosphate in biological samples and ATPase activities.

Talanta

August 2025

Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica, Junín 956, Buenos Aires, Argentina; Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, UBA - CONICET, Junín 956, Buenos Aires, Argentina. Electronic address:

The quantification of orthophosphate is essential for applications like water quality assessment, soil fertility analysis, metabolic monitoring and enzyme activity evaluation. Chemical quantification methods include the reaction between orthophosphate and molybdate under acidic conditions to form 12-molybdophosphoric acid units, which auto-assembles forming nanometer size particles. The adsorption of malachite green to these nanoparticles allows their spectrophotometric detection constituting one of the most widely used methods to quantify phosphate.

View Article and Find Full Text PDF

Multi-tissue regeneration remains a critical clinical challenge due to the lack of solutions that can replicate the hierarchical heterogeneity of such complex interfaces. While biofabrication approaches, such as extrusion-based, allow replicating robust, biomimetic, and layered designs, constructs are usually hindered by inadequate phase/layer integration, poor filler dispersion, and mismatched rheological and mechanical performances. This study introduces an ink engineering strategy as a solution for integrating natural-based nanocomposites in multi-tissue regenerative approaches.

View Article and Find Full Text PDF

Magnetic particle spectroscopy for Eu-VSOP quantification in intestinal inflammation: distinguishing nanoparticle signals from dietary contamination.

Nanoscale Adv

August 2025

Physikalisch-Technische Bundesanstalt (PTB), Working Group 8.23 Metrology for Magnetic Nanoparticles Abbestr. 2-12 10587 Berlin Germany

Magnetic nanoparticles are gaining increasing attention as a promising alternative to gadolinium-based contrast agents in magnetic resonance imaging, primarily due to their low toxicity. In this study, we investigated the use of magnetic iron oxide nanoparticles in mouse models of intestinal inflammation to assess their potential for detecting changes in the extracellular matrix. For magnetic quantification, we employed magnetic particle spectroscopy, which offers high sensitivity and minimal interference from biological tissue.

View Article and Find Full Text PDF

Chiral crystals with well-defined handedness in atomic arrangements exhibit properties such as spin selectivity, asymmetric magnetoresistance, and skyrmions. Although similar geometry-induced phenomena in chiral organic molecule-based systems were observed, synthesizing uniform inorganic nanostructures with desired chirality using a scalable method remains challenging. We electrochemically synthesized chiral ferromagnetic cobalt-iron nanohelices from nanoparticles in anodized aluminum oxide templates.

View Article and Find Full Text PDF

Redox-active organic-inorganic hybrid electrode materials are promising candidates for eco-friendly, high-energy-density supercapacitors. The synergy between organic and inorganic components in energy storage devices has attracted considerable interest due to their complementary attributes, including flexibility, long-term stability, and high conductivity. This study presents an innovative approach for synthesizing an organic-inorganic active electrode material by grafting diazonium salts of 8-aminoquinoline (8-AQ-N ) onto CuFeO nanoparticle (NP) surfaces.

View Article and Find Full Text PDF