Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polycyclic aromatic hydrocarbons such as perylene and pyrene and their derivatives are highly emissive fluorophores in solution. However, the practical applications of these materials in the field of molecular electronic and light-emitting devices are often hindered by self-quenching effects because of the formation of nonfluorescent aggregates in concentrated solutions or in the solid state. Herein, we demonstrate that aggregation-caused quenching of perylenes can be minimalized by molecular incorporation into metal-organic frameworks (MOFs). This study utilized a stable Zr cluster-based MOF, UiO-67, as a matrix. Linear linkers containing photoresponsive moieties were designed and incorporated into the parent UiO-67 scaffold through the partial replacement of the nonfluorescent linkers of a similar length, forming mixed-linker MOFs. The average distance between perylene moieties was tuned by changing the linker ratios, thus controlling the fluorescence intensity, emission wavelength, and quantum yield. Molecular modeling was further adopted to correlate the number of isolated perylene linkers within the framework with the ratio between the two linkers, thereby rationalizing the change in the observed fluorescent properties. Taking advantage of the tunable fluorescence, inherent porosity, and high chemical stability of this MOF platform, it was applied as a fluorescent sensor for oxygen detection in the gas phase, a model reaction, showing fast response and good recyclability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c05512DOI Listing

Publication Analysis

Top Keywords

solid state
8
metal-organic frameworks
8
fluorescence enhancement
4
enhancement solid
4
state isolating
4
perylene
4
isolating perylene
4
perylene fluorophores
4
fluorophores metal-organic
4
frameworks polycyclic
4

Similar Publications

The electrolyte-electrode interface serves as the foundation for a myriad of chemical and physical processes. In battery chemistry, the formation of a well-known solid-electrolyte interphase (SEI) plays a pivotal role in ensuring the reversible operations of rechargeable lithium-ion batteries (LIBs). However, characterizing the precise chemical composition of the low crystallinity and highly sensitive SEI presents a formidable challenge.

View Article and Find Full Text PDF

Reconfigurable nonlinear Pancharatnam-Berry diffractive optics with photopatterned ferroelectric nematics.

Light Sci Appl

September 2025

National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, Nanjing University, 210023, Nanjing, China.

Planar optical elements incorporating space-varying Pancharatnam-Berry phase have revolutionized the manipulation of light fields by enabling continuous control over amplitude, phase, and polarization. While previous research focusing on linear functionalities using apolar liquid crystals (LCs) has attracted much attention, extending this concept to the nonlinear regime offers unprecedented opportunities for advanced optical processing. Here, we demonstrate the reconfigurable nonlinear Pancharatnam-Berry LC diffractive optics in photopatterned ion-doped ferroelectric nematics.

View Article and Find Full Text PDF

The development of analytical techniques applicable to powdered pharmaceutical co-crystals, including those containing excipients, represents a comprehensive strategy for quality control in both drug development and regulatory settings. This study investigates the structural characterization of indomethacin-nicotinamide co-crystals using a combination of microcrystal electron diffraction (microED), solid-state NMR (SSNMR), Raman spectroscopy, and powder X-ray diffraction (PXRD). MicroED analysis revealed the crystal structure of the co-crystal, while SSNMR measurements provided insights into the molecular interactions within the structure.

View Article and Find Full Text PDF

Biorelevant simulation of GI variability and its impact on the release behavior of non-disintegrating formulations: A case study using DHSI-IV (NERDT) system as a novel in vitro tool.

Int J Pharm

September 2025

Life Quality (LQ) Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province 215123, China. Electronic address:

Gastrointestinal (GI) physiological variability significantly influences dissolution and bioavailability of non-disintegrating solid drug systems. This study employed the dynamic human stomach-intestine (DHSI-IV, branded as NERDT) system to characterize how gastric emptying kinetics and intestinal environmental dynamics affect drug release, using extended-release metformin matrix tablets (Glucophage XR®) and metformin osmotic pump tablets (Nida®) as model formulations. The DHSI-IV (NERDT) system accurately simulated three fasting-state gastric emptying profiles (30-120 min complete emptying) with excellent fit to the modified Elashoff model (R = 0.

View Article and Find Full Text PDF

Background: Previous studies have operationalized the NCCN list of high-risk medications in older adults into a measurable tool known as the Geriatric Oncology Potentially Inappropriate Medications (GO-PIMs) scale. The current study aims to evaluate the ability of GO-PIMs to identify high-risk medications and their impact on patients with both solid and liquid tumors managed in a large national health care system.

Methods: We performed a retrospective cohort study using data from the national Veterans Affairs (VA) Cancer Registry and electronic health records, including all veterans newly diagnosed with a solid or liquid malignancy from 2000 to 2022.

View Article and Find Full Text PDF