98%
921
2 minutes
20
Micro- and nano-optomechanics has attracted broad interest for applications of mechanical sensing and coherent signal processing. For nonpiezoelectric materials such as silicon or silicon nitride, electrocapacitive effects with metals patterned on mechanical structures are usually adopted to actuate the mechanical motion of the micro- or nanomechanical devices. However, the metals have deleterious effects on the mechanical structures because they add an additional weight and also introduce considerable mechanical losses. To solve these problems, we have proposed and experimentally demonstrated a new scheme of electro-optomechanical integration on a silicon-on-insulator platform by using single-layer graphene as a highly conductive coating for electromechanical actuation. Mechanical modes of different groups were electrically actuated and optically detected in a micromechanical resonator, with the mechanical Q > 1000 measured in air. Compatible with CMOS technology, our scheme is suitable for large-scale electro-optomechanical integration and will have wide applications in high-speed sensing, communication, and signal processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.382770 | DOI Listing |
Nat Nanotechnol
May 2025
Moore Laboratory of Engineering, California Institute of Technology, Pasadena, CA, USA.
An interface between microwave and optical photons offers the potential to network remote superconducting quantum processors. To preserve fragile quantum states, a microwave-to-optical transducer must operate efficiently in the quantum-enabled regime by generating less than one photon of noise referred to its input. Here we achieve these criteria using an integrated electro-optomechanical device made from crystalline silicon.
View Article and Find Full Text PDFNat Commun
August 2024
Department of Applied Physics, Yale University, New Haven, CT, USA.
New strategies for converting signals between optical and microwave domains could play a pivotal role in advancing both classical and quantum technologies. Traditional approaches to optical-to-microwave transduction typically perturb or destroy the information encoded on intensity of the light field, eliminating the possibility for further processing or distribution of these signals. In this paper, we introduce an optical-to-microwave conversion method that allows for both detection and spectral analysis of microwave photonic signals without degradation of their information content.
View Article and Find Full Text PDFACS Photonics
August 2023
Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris Saclay, Palaiseau 91120, France.
We report on a new approach of a low phase noise electro-optomechanical oscillator directly working in the GHz frequency range. The developed nanoscale oscillator is a one-dimensional photonic crystal made of gallium phosphide (GaP), heterogeneously integrated on silicon-on-insulator circuitry. Based on the strong interaction between the optical mode at the telecommunication wavelength and the mechanical mode in GHz, ultra-pure mechanical oscillations are enabled and directly imprinted on an optical carrier.
View Article and Find Full Text PDFNat Commun
September 2022
Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
Optical computing with integrated photonics brings a pivotal paradigm shift to data-intensive computing technologies. However, the scaling of on-chip photonic architectures using spatially distributed schemes faces the challenge imposed by the fundamental limit of integration density. Synthetic dimensions of light offer the opportunity to extend the length of operand vectors within a single photonic component.
View Article and Find Full Text PDFNanotechnology
September 2022
Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France.
Chaos enables the emergence of randomness in deterministic physical systems. Therefore it can be exploited for the conception of true random number generators mandatory in classical cryptography applications. Meanwhile, nanomechanical oscillators, at the core of many on-board functionalities such as sensing, reveal as excellent candidates to behave chaotically.
View Article and Find Full Text PDF