ABCG2 transports anticancer drugs via a closed-to-open switch.

Nat Commun

Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA.

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

ABCG2 is an ABC transporter that extrudes a variety of compounds from cells, and presents an obstacle in treating chemotherapy-resistant cancers. Despite recent structural insights, no anticancer drug bound to ABCG2 has been resolved, and the mechanisms of multidrug transport remain obscure. Such a gap of knowledge limits the development of novel compounds that block or evade this critical molecular pump. Here we present single-particle cryo-EM studies of ABCG2 in the apo state, and bound to the three structurally distinct chemotherapeutics. Without the binding of conformation-selective antibody fragments or inhibitors, the resting ABCG2 adopts a closed conformation. Our cryo-EM, biochemical, and functional analyses reveal the binding mode of three chemotherapeutic compounds, demonstrate how these molecules open the closed conformation of the transporter, and establish that imatinib is particularly effective in stabilizing the inward facing conformation of ABCG2. Together these studies reveal the previously unrecognized conformational cycle of ABCG2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210939PMC
http://dx.doi.org/10.1038/s41467-020-16155-2DOI Listing

Publication Analysis

Top Keywords

closed conformation
8
abcg2
7
abcg2 transports
4
transports anticancer
4
anticancer drugs
4
drugs closed-to-open
4
closed-to-open switch
4
switch abcg2
4
abcg2 abc
4
abc transporter
4

Similar Publications

The E76K mutation in protein tyrosine phosphatase (PTP) SHP2 is a recurrent driver of developmental disorders and cancers, yet the mechanism by which this single-site substitution promotes persistent activation remains elusive. Here, we combine path-based conformational sampling, unbiased molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) to elucidate how E76K reshapes the activation landscape and regulatory architecture of SHP2. Using a minimum-action trajectory derived from experimentally determined closed and open structures, we generated representative transition intermediates to guide the unbiased MD simulations.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

The gas-phase structures of dibenzo-24-crown-8 (DB24C8) and dinaphtho-24-crown-8 (DN24C8) complexes with divalent metal ions (Mg, Ca, Sr, Ba, Fe, Ni, and Zn) were investigated by cryogenic ion mobility-mass spectrometry (IM-MS) in combination with density functional theory calculations. Several complexes, particularly those of DN24C8, exhibited multiple coexisting conformers. DFT-optimized structures were classified based on the relative orientation of the two aromatic rings in the crown ether.

View Article and Find Full Text PDF

Bis(l-leucinium) hexa-chlorido-stannate(IV) dihydrate.

IUCrdata

August 2025

Univ Rennes CNRS ISCR (Institut des Sciences Chimiques de Rennes), 35042 Rennes France.

The title compound, (CHNO)[SnCl]·2HO, features l-leucinium cations adopting extended conformations, which maximizes the separation between the methyl groups [-CH(CH)] and the polar NH and COOH moieties. Additionally, an intra-molecular hydrogen bond between the ammonium (NH ) group and the carboxyl group induces a slight reduction in the C-C-N bond angles, with an average value of 106.5°, compared to the ideal tetra-hedral angle of 109.

View Article and Find Full Text PDF

The understanding of the conformational events occurring through the Insulin-like Receptors (ILRs) upon binding of their cognate hormones is very advanced, thanks to multidisciplinary efforts and breakthroughs, from molecular/cell biology to structural studies. However, the full length structures of this class of Tyrosine Kinase (TK) receptors are still not available. This is due to fundamental methodological constraints: a need for lipid micelles or nanodiscs required for the stabilisation of the full-length single receptor molecule.

View Article and Find Full Text PDF