98%
921
2 minutes
20
Synapse formation is a dynamic process essential for the development and maturation of the neuronal circuitry in the brain. At the synaptic cleft, trans-synaptic protein-protein interactions are major biological determinants of proper synapse efficacy. The balance of excitatory and inhibitory synaptic transmission (E-I balance) stabilizes synaptic activity, and dysregulation of the E-I balance has been implicated in neurodevelopmental disorders, including autism spectrum disorders. However, the molecular mechanisms underlying the E-I balance remain to be elucidated. Here, using single-cell transcriptomics, immunohistochemistry, and electrophysiology approaches to murine CA1 pyramidal neurons obtained from organotypic hippocampal slice cultures, we investigate neuroligin () genes that encode a family of postsynaptic adhesion molecules known to shape excitatory and inhibitory synaptic function. We demonstrate that the NLGN3 protein differentially regulates inhibitory synaptic transmission in a splice isoform-dependent manner at hippocampal CA1 synapses. We also found that distinct subcellular localizations of the NLGN3 isoforms contribute to the functional differences observed among these isoforms. Finally, results from single-cell RNA-Seq analyses revealed that and are the major murine genes and that the expression levels of the splice isoforms are highly diverse in CA1 pyramidal neurons. Our results delineate isoform-specific effects of genes on the E-I balance in the murine hippocampus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307194 | PMC |
http://dx.doi.org/10.1074/jbc.AC120.012571 | DOI Listing |
Brain Res
September 2025
Department of Geriatric Rehabilitation, Clinical Research Center for Geriatric Disorders of Guangxi Zhuang Autonomous Region, Guangxi, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, No 85 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China. Electronic address: 13657813091@163
Levofloxacin (LVFX)-associated seizures are thought to arise from disrupted excitatory-inhibitory balance, but the underlying synaptic mechanisms remain unclear. This study investigated how LVFX alters both glutamatergic and GABAergic transmission to promote neuronal hyperexcitability. We combined in vitro and in vivo approaches using primary cortical neurons treated with LVFX and adult rats administered LVFX.
View Article and Find Full Text PDFAnn Anat
September 2025
Department of Biology, Faculty of Arts and Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
The Anatolian ground squirrel (Spermophilus xanthoprymnus) offers a valuable model for investigating neuroadaptive processes in the retina during hibernation. This study aimed to assess the expression of vesicular glutamate transporter 1 (VGLUT1), glutamic acid decarboxylase (GAD) isoforms GAD65 and GAD67, and microtubule-associated protein 2 (MAP2) in the retina during pre-hibernation and hibernation states. Retinal tissues were analyzed using immunohistochemistry and densitometric quantification.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
As a newly recognized type of emerging contaminant, liquid crystal monomers (LCMs) are widely distributed in the environment and human consumptions and their effects on visual systems and the underlying mechanisms are yet to be elucidated. Therefore, this study investigated the visual-neuro influence of 3cH2B (a frequently detected LCM) under environmentally relevant concentrations in zebrafish. The findings revealed that 40 μg/L 3cH2B induced visual behaviors after 40 days of exposure, which was accompanied by decreased retinoic acid (RA) levels and retinal structural deformation in the eyes.
View Article and Find Full Text PDFStudy Objectives: Brief sleep loss alters cognition and the activity and synaptic structures of both principal neurons and interneurons in hippocampus. However, although sleep-dependent coordination of activity between hippocampus and neocortex is essential for memory consolidation, much less is known about how sleep loss affects neocortical input to hippocampus, or excitatory-inhibitory balance within neocortical structures. We aimed to test how the synaptic structures of SST+ interneurons in lateral and medial entorhinal cortex (LEC and MEC), which are the major neocortical input to hippocampus, are affected by brief sleep disruption in the hours following learning.
View Article and Find Full Text PDFWhole-brain models are valuable tools for understanding brain dynamics in health and disease by enabling the testing of causal mechanisms and identification of therapeutic targets through dynamic simulations. Among these models, biophysically inspired neural mass models have been widely used to simulate electrophysiological recordings, such as MEG and EEG. However, traditional models face limitations, including susceptibility to hyperexcitation, which constrains their ability to capture the full richness of neural dynamics.
View Article and Find Full Text PDF