98%
921
2 minutes
20
Background: Lipid infiltration and inflammatory response run through the occurrence of atherosclerosis. Differentiation into macrophages and foam cell formation are the key steps of AS. Aim of this study was that the differential gene expression between foam cells and macrophages was analyzed to search the key links of foam cell generation, so as to explore the pathogenesis of atherosclerosis and provide targets for the early screening and prevention of coronary artery disease (CAD).
Methods: The gene expression profiles of GSE9874 were downloaded from Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE9874) on GPL96 [HG-U133A] Affymetrix Human Genome U133. A total of 22,383 genes were analyzed for differentially expression genes (DEGs) by Bayes package. GO enrichment analysis and KEGG pathway analysis for DEGs were performed using KOBAS 3.0 software (Peking University, Beijing, China). STRING software (STRING 10.0; European Molecular Biology Laboratory, Heidelberg, Germany) was used to analyze the protein-protein interaction (PPI) of DEGs.
Results: A total of 167 DEGs between macrophages and foam cells were identified. Compared with macrophages, 102 genes were significantly upregulated and 65 genes were significantly downregulated (Pā<ā0.01, fold-change >ā1) in foam cells. DEGs were mainly enrich in 'sterol biosynthetic and metabolic process', 'cholesterol metabolic and biosynthetic process' by GO enrichment analysis. The results of KEGG pathway analysis showed all differential genes are involved in biological processes through 143 KEGG pathways. A PPI network of the DEGs was constructed and 10 outstanding genes of the PPI network was identified by using Cytoscape, which include HMGCR, SREBF2, LDLR, HMGCS1, FDFT1, LPL, DHCR24, SQLE, ABCA1 and FDPS.
Conclusion: Lipid metabolism related genes and molecular pathways were the key to the transformation of macrophages into foam cells. Therefore, lipid metabolism disorder is the key to turn macrophages into foam cells, which plays a major role in CAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7201525 | PMC |
http://dx.doi.org/10.1186/s12872-020-01495-0 | DOI Listing |
Atherosclerosis (AS) is a significant contributor to cardiovascular events. Recent studies have demonstrated that ferroptosis of foam cells is a significant driver of AS. Nevertheless, insights into the precise antiferroptosis therapies remain limited.
View Article and Find Full Text PDFBioorg Chem
August 2025
Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang, Hunan 421001, China; School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China. Electronic address:
Inhibition of human monoamine oxidase B (hMAO-B) to prevent both oxidative stress and lipid metabolism disorders, which are high-risk factors for pathogenesis of atherosclerosis, is a potential strategy for the treatment of atherosclerosis. In this study, we have explored a series of C-3 nitrothiophene substituted thiochromone analogues that showed good to excellent potency against hMAO-B. The strategy of introduction the nitro-group into thiophene linker, which contributes pivotal interactions with Cys172, significantly improved the potency and selectivity of these compounds.
View Article and Find Full Text PDFPhytomedicine
August 2025
Cardiology Department, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China. Electronic address:
Background: Atherosclerosis (AS) is a leading risk factor for cardiovascular diseases globally, characterised by the accumulation of lipids and cholesterol in arterial walls, causing vascular narrowing and sclerosis along with chronic inflammation; this leads to increased risk of heart disease and stroke, significantly impacting patients' health. Danxia Tiaoban Decoction (DXTB), a traditional Chinese medicine (TCM) formula, has demonstrated positive clinical effects in treating AS; however, its mechanisms of action remain unclear.
Objective: To explore the potential mechanisms of action of DXTB in treating AS through multi-omics integration and experimental validation.
Biochem Pharmacol
September 2025
Guizhou Medical University, Guiyang 550004 Guizhou, PR China; Department of Cardiovascular Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004 Guizhou, PR China; The Key Laboratory of Myocardial Remodeling Research, The Affiliated Hospital of Guizhou Medical University, G
Atherosclerosis (AS), a chronic inflammatory disease and a leading cause of cardiovascular morbidity and mortality. Macrophage-mediated lipid uptake and inflammation are central to plaque formation. TREM2, an immunoreceptor expressed in macrophages, has been reported to regulate lipid metabolism and inflammation, yet its role in atherosclerosis remains controversial.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544.
Harnessing instabilities of multicomponent multistable structural assemblies can potentially lead to scalable and reversible functionalities, which can be enhanced by exploring frustration. For instance, standard Kresling origami cells exhibit nontunable intrinsic energy landscapes determined by their geometry and material properties, limiting their adaptability after fabrication. To overcome this limitation, we introduce frustration to enable fine-tuning of the energy landscape and resulting deformation states.
View Article and Find Full Text PDF