Redox-Active Phenolic Compounds Mediate the Cytotoxic and Antioxidant Effects of Carpodesmia tamariscifolia (=Cystoseira tamariscifolia).

Chem Biodivers

Departamento de Farmacología, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Carpodesmia tamariscifolia is a brown alga rich in (poly)phenols with important cytotoxic and antioxidant effects. However, the relationship between its chemical composition and its effects is unknown. The aim of this study is to identify the potential compounds and mechanisms responsible for its main effects. The alga was extracted consecutively with hexane, dichloromethane and methanol and further fractionated using Sephadex LH-20 and silica gel columns when appropriate. The fractions were subjected to thin-layer chromatography and liquid chromatography-mass spectrometry analysis and evaluated for their total phenolic content (Folin-Ciocalteu assay), radical scavenging activity (DPPH assay), cytotoxic activity (MTT assay on the SH-SY5Y cell line), and ability to generate H O (Amplex Red assay). Chromatographic and phenolic analyses of the fractions indicate that abundant redox-active phenols are present in all the fractions and that a high amount of prenylated hydroquinone derivatives is present in the apolar ones. In the hexane and dichloromethane fractions, the cytotoxic and antioxidant activities are closely related to their phenolic content, whereas in the methanol fractions, the cytotoxicity is negatively related to the phenolic content and the antioxidant activity is positively related to it. In the same tests, hydroquinone behaves as both strong cytotoxic and antioxidant agent. H O assay shows that C. tamariscifolia fractions and hydroquinone can autoxidize and generate H O . Our results suggest that redox-active phenols produce the pharmacological effects described for C. tamariscifolia and that the hydroquinone moiety of prenylated hydroquinone derivatives is responsible for both cytotoxic (through a pro-oxidant mechanism secondary to its autoxidation) and antioxidant effects of the apolar fractions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202000121DOI Listing

Publication Analysis

Top Keywords

cytotoxic antioxidant
16
antioxidant effects
12
phenolic content
12
carpodesmia tamariscifolia
8
hexane dichloromethane
8
redox-active phenols
8
prenylated hydroquinone
8
hydroquinone derivatives
8
fractions
7
cytotoxic
6

Similar Publications

Introduction: Leukemia and radiation-induced liver toxicity are significant health challenges requiring effective therapeutic strategies. This study aimed to evaluate the therapeutic efficacy and radiosensitizing effects of Diosgenin-loaded silver nanoparticles (Dio-AgNPs) in ENU-induced leukemic mice, with a focus on their dual role in mitigating leukemia progression and γ-irradiation-induced hepatotoxicity.

Methods: Dio-AgNPs were synthesized and characterized using TEM, UV-Vis spectroscopy, FT-IR spectroscopy, and encapsulation efficiency analysis.

View Article and Find Full Text PDF

Mn-doped carbon dots-based fluorescent-colorimetric dual-mode probes for selective and sensitive detection of Cr(VI) ions and l-ascorbic acid via smartphone-integrated analytical platform.

Anal Chim Acta

November 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Key Laboratory of Nanobiosensor Analysis, College of Chemistry and Materials, Nanning Normal University, Nanning, 530001, PR China. Electronic address:

Background: Hexavalent chromium ions (Cr(VI)), a notorious toxic heavy metal pollutant with proven carcinogenicity, endangers human health and the environment. Meanwhile, l-ascorbic acid (L-AA), a vital biological antioxidant, has abnormal levels closely tied to various diseases. Developing efficient synchronous detection methods for these two key analytes is of great value in clinical and environmental monitoring.

View Article and Find Full Text PDF

Chitosan/dialdehyde starch coating onto l-tyrosine and curcumin intercalated layered double hydroxide for improved the therapeutic effects of breast cancer.

Int J Biol Macromol

September 2025

Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Science, Tabriz, Iran. Electronic address:

This study aimed to develop an innovative pH-sensitive bio-hydrogel containing curcumin (CUR) and l-tyrosine (Tyr) intercalated layered double hydroxide-modified chitosan (CS)/dialdehyde starch (DAS) (DAS-CS@Tyr-CUR@LDH) to facilitate the controlled release of Tyr and CUR, thereby enhancing their bioavailability and therapeutic effects. The entrapment efficiencies of Tyr and CUR were obtained at 79.31 ± 5.

View Article and Find Full Text PDF

This study investigates the cytotoxic and biochemical effects of PEGylated graphene oxide sol-gel (SJ-go) nanoparticles, curcumin, and quercetin on BEAS-2B human bronchial epithelial. In this work, a new graphene oxide nanocomposite (SJ-go) was produced using the sol-gel method through a one-step reaction. These hybrid sol-gel systems include graphite, triethyl orthosilicate (TEOS), and polyethylene glycol (PEG) having a molecular weight of 8000 g/mol.

View Article and Find Full Text PDF

Novel antibacterial, antioxidant, and anti-inflammatory aminated chitosan hybrid quinoline Schiff base as multi-target agent: Design, molecular docking, and toxicity assessment.

Carbohydr Polym

November 2025

Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab Ci

This study involves the synthesis of a novel 7-ethoxy-3-formyl-2-morpholino quinoline (MQ) derivative, which was hybridized with aminated chitosan (AMCH) to yield a new AMCH-MQ Schiff base. Structural characterization via H NMR, FTIR, electronic spectra, XRD, and TGA confirmed successful hybridization. Ion exchange capacity decreased from 28.

View Article and Find Full Text PDF