Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

BACKGROUND Carbon monoxide (CO) has anti-inflammatory effects and protects the intestinal mucosal barrier in sepsis. Pyroptosis, or cell death associated with sepsis, is mediated by caspase-1 activation. This study aimed to investigate the role of CO on the expression of proteins associated with intestinal mucosal pyroptosis in a rat model of sepsis induced by cecal ligation and puncture (CLP). MATERIAL AND METHODS The rat model of sepsis was developed using CLP. Male Sprague-Dawley rats (n=120) were divided into six study groups: the sham group (n=20); the CLP group (n=20); the hemin group (treated with ferric chloride and heme) (n=20); the zinc protoporphyrin IX (ZnPPIX) group (n=20); the CO-releasing molecule 2 (CORM-2) group (n=20); and the inactive CORM-2 (iCORM-2) group (n=20). Hemin and CORM-2 were CO donors, and ZnPPIX was a CO inhibitor. In the six groups, the seven-day survival curves, the fluorescein isothiocyanate (FITC)-labeled dextran 4000 Da (FD-4) permeability assay, levels of intestinal pyroptosis proteins caspase-1, caspase-11, and gasdermin D (GSDMD) were measured by confocal fluorescence microscopy. Proinflammatory cytokines interleukin (IL)-18, IL-1ß, and high mobility group box protein 1 (HMGB1) were measured by Western blot and enzyme-linked immunosorbent assay (ELISA). RESULTS CO reduced the mortality rate in rats with sepsis and reduced intestinal mucosal permeability and mucosal damage. CO also reduced the expression levels of IL-18, IL-1ß, and HMGB1, and reduced pyroptosis by preventing the cleavage of caspase-1 and caspase-11. CONCLUSIONS In a rat model of sepsis induced by CLP, CO had a protective role by inhibiting intestinal mucosal pyroptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7207005PMC
http://dx.doi.org/10.12659/MSM.920668DOI Listing

Publication Analysis

Top Keywords

intestinal mucosal
20
group n=20
20
rat model
16
model sepsis
16
mucosal pyroptosis
12
sepsis induced
12
carbon monoxide
8
expression proteins
8
proteins associated
8
associated intestinal
8

Similar Publications

Effects and Mechanisms of Lactiplantibacillus plantarum G83 on Enterotoxigenic Escherichia coli (ETEC)-Induced Intestinal Inflammation.

Probiotics Antimicrob Proteins

September 2025

Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.

Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.

View Article and Find Full Text PDF

Objective: To study the results of treatment of cancer in tubular villous adenomas.

Material And Methods: A retrospective analysis included 51 patients with cTis-T1N0M0 between 02.2019 and 09.

View Article and Find Full Text PDF

Host-pathogen interactions involve two critical strategies: resistance, whereby hosts clear invading microbes, and tolerance, whereby hosts carry high pathogen burden asymptomatically. Here, we investigate mechanisms by which Salmonella-superspreader (SSP) hosts maintain an asymptomatic state during chronic infection. We found that regulatory T cells (Tregs) are essential for this disease-tolerant state, limiting intestinal immunopathology and enabling SSP hosts to thrive, while facilitating Salmonella transmission.

View Article and Find Full Text PDF

Enteroinvasive bacterial pathogens are responsible for an enormous worldwide disease burden that critically affects the young and immunocompromised. is a gram-negative enteric pathogen closely related to the plague agent that colonizes intestinal tissues, induces the formation of pyogranulomas along the intestinal tract, and disseminates to systemic organs following oral infection of experimental rodents. Prior studies proposed that systemic tissues were colonized by a pool of intestinal replicating bacteria distinct from populations within Peyer's patches and mesenteric lymph nodes.

View Article and Find Full Text PDF

Constipation is a common gastrointestinal disorder characterized by infrequent and difficult bowel movements, hard stool consistency, and delayed intestinal transit. The present study evaluated the phytochemical profile and physiological effects of the aqueous extract of beetroot leaves (AEBL) in a rat model of Loperamide (LOP)-induced constipation. Thirty-six male Wistar rats were randomly assigned to six groups (n = 6): two controls (normal and constipated) and four constipated groups receiving either increasing doses of AEBL (100, 200, or 400 mg/kg, b.

View Article and Find Full Text PDF