Physiological responses of garden cress (L. sativum) to different types of microplastics.

Sci Total Environ

Department of Life Sciences, University of Trieste, 34127 Trieste, Italy. Electronic address:

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this study, for the first time, acute and chronic toxicity caused by four different kinds of microplastics: polypropylene (PP), polyethylene (PE), polyvinylchloride (PVC), and a commercial mixture (PE + PVC) on Lepidium sativum were evaluated. Parameters considered were: i) biometric parameters (e.g. percentage inhibition of seed germination, plant height, leaf number and fresh biomass productions); and ii) oxidative stress (e.g. levels of hydrogen peroxide, glutathione, and ascorbic acid). On plants exposed to chronic stress chlorophylls, carotenoids, aminolaevulinic acid, and proline productions were, also, evaluated. PVC resulted the most toxic than other plastic materials tested. This study represents the first paper highlighting microplastics are able to produce oxidative burst in tested plants and could represent an important starting point for future researches on biochemical effects of microplastic in terrestrial environments such as agroecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.138609DOI Listing

Publication Analysis

Top Keywords

physiological responses
4
responses garden
4
garden cress
4
cress sativum
4
sativum types
4
types microplastics
4
microplastics study
4
study time
4
time acute
4
acute chronic
4

Similar Publications

Self-Propelled Magnetic Micromotor-Functionalized DNA Tile System for Autonomous Capture of Circulating Tumor Cells in Clinical Diagnostics.

Adv Sci (Weinh)

September 2025

Key Laboratory of Emergency and Trauma of Ministry of Education, The First Affiliated Hospital, NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine & The Second Affiliated Hospital, Hainan Medical University, Haikou, 571199, China.

Circulating tumor cells (CTCs) carry intact tumor molecular information, making them invaluable for personalized cancer monitoring. However, conventional capture methods, relying on passive diffusion, suffer from low efficiency due to insufficient collision frequency, severely limiting clinical utility. Herein, a magnetic micromotor-functionalized DNA-array hunter (MMDA hunter) is developed by integrating enzyme-propelled micromotors, magnetic nanoparticles, and nucleic acid aptamers into distinct functional partitions of a DNA tile self-assembly structure.

View Article and Find Full Text PDF

An electrochemical biosensor for detection of copper(II) based on FeO@Au magnetic nanoparticles and Cu-dependent DNAzyme assisted nicking endonuclease signal amplification.

Analyst

September 2025

Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.

Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Effective locomotion requires physiological systems to adapt to instabilities. While gait perturbation recovery often appears rapid, it is possible that longer-lasting effects may be present. Therefore, this study explored recovery trends of gait dynamics following an experimenter-induced perturbation.

View Article and Find Full Text PDF