98%
921
2 minutes
20
Electric cell-substrate impedance spectroscopy (ECIS) enables non-invasive and continuous read-out of electrical parameters of living tissue. The aim of the current study was to investigate the performance of interdigitated sensors with 50 μm electrode width and 50 μm inter-electrode distance made of gold, aluminium, and titanium for monitoring the barrier properties of epithelial cells in tissue culture. At first, the measurement performance of the photolithographic fabricated sensors was characterized by defined reference electrolytes. The sensors were used to monitor the electrical properties of two adherent epithelial barrier tissue models: renal proximal tubular LLC-PK1 cells, representing a normal functional transporting epithelium, and human cervical cancer-derived HeLa cells, forming non-transporting cancerous epithelial tissue. Then, the impedance spectra obtained were analysed by numerically fitting the parameters of the two different models to the measured impedance spectrum. Aluminium sensors proved to be as sensitive and consistent in repeated online-recordings for continuous cell growth and differentiation monitoring as sensors made of gold, the standard electrode material. Titanium electrodes exhibited an elevated intrinsic ohmic resistance in comparison to gold reflecting its lower electric conductivity. Analysis of impedance spectra through applying models and numerical data fitting enabled the detailed investigation of the development and properties of a functional transporting epithelial tissue using either gold or aluminium sensors. The result of the data obtained, supports the consideration of aluminium and titanium sensor materials as potential alternatives to gold sensors for advanced application of ECIS spectroscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181462 | PMC |
http://dx.doi.org/10.1007/s10544-020-00486-4 | DOI Listing |
Mikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFACS Omega
August 2025
State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
High-purity metals, defined as metals with impurity levels minimized to achieve purity, typically ≥99.999% (5N grade), constitute critical raw materials and serve as essential supporting components for modern high-technology industries. Common examples include high-purity indium, gallium, germanium, magnesium, lithium, aluminum, tin, tellurium, and titanium.
View Article and Find Full Text PDFMicromachines (Basel)
August 2025
Department of Electronic Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan.
In this study, tin oxide (SnO) resistive random-access memory (RRAM) thin films were fabricated using the thermal evaporation and radiofrequency and dc frequency sputtering techniques for metal-insulator-metal (MIM) structures. The fabrication process began with the deposition of a silicon dioxide (SiO) layer onto a silicon (Si) substrate, followed by the deposition of a titanium nitride (TiN) layer to serve as the bottom electrode. Subsequently, the tin oxide (SnO) layer was deposited as the resistive switching insulator.
View Article and Find Full Text PDFSensors (Basel)
August 2025
Instituto Nacional de Astrofísica, Óptica y Electrónica-INAOE, Puebla 72840, Mexico.
Transcorneal electrical stimulation (TES) is a promising treatment for several retinal degenerative diseases (RDDs). TES involves the application of a controlled electrical current to the anterior surface of the cornea, aimed at activating the retina and posterior ocular structures. Dawson-Trick-Litzkow (DTL) and ERG-JET electrodes are among the most widely used for TES.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Department of Airframe and Powerplant Maintenance, Faculty of Aeronautics and Astronautics, Kocaeli University, Kocaeli 41001, Türkiye.
Drilling-induced damage in fiber-reinforced polymer composite materials was measured excavating four laminates, basalt (B), glass (G) and their two sandwich type hybrids (BGB, GBG), with 6 mm twist drills at 1520 revolutions per minute and 0.10 mm rev under dry running with an uncoated high-speed steel (HSS-R), grind-coated high-speed steel (HSS-G) or physical vapor deposition-coated (high-speed steel coated with Titanium Nitride (TiN) and Titanium Aluminum Nitride (TiAlN)) drill bits. The hybrid sheets were deliberately incorporated to clarify how alternating basalt-glass architectures redistribute interlaminar stresses during drilling, while the hard, low-friction TiN and TiAlN ceramic coatings enhance cutting performance by forming a heat-resistant tribological barrier that lowers tool-workpiece adhesion, reduces interface temperature, and thereby suppresses thrust-induced delamination.
View Article and Find Full Text PDF