98%
921
2 minutes
20
High-throughput next-generation sequencing (NGS) is a feasible technique to detect considerably more markers and simultaneously obtain length and sequence information in a single reaction. In this study, we developed an NGS panel including 42 commonly used autosomal short tandem repeats (STRs) and amelogenin on the Illumina MiSeq FGx™. Sequencing accuracy was validated by the consistency of 2800M Control DNA detected using the ForenSeq™ DNA Signature Prep Kit and Sanger sequencing. Nomenclature incompatibility was found between NGS-STR and CE-STR typing at 9 loci (D3S3045, D6S477, D7S3048, D9S925, D14S608, D17S1290, D18S535, D21S1270, GATA198B05), despite the correct sequence. The difference was caused by the two different methods of identifying motif sequence and a one-to-one correspondence can be found. We evaluated the panel by investigating consistency, sequencing sensitivity and the effectiveness of the 2nd-degree relationship identification. Herein, we present sequencing results from 58 unrelated individuals of the Hebei Han population. The total discrimination power (TDP) and cumulative probability of exclusion for trio paternity testing (CPE) of the 42 NGS-STR panels reached 1-2.84 × 10 and 1-9.87 × 10, respectively. By family simulation and likelihood ratio (LR) calculation, this panel was shown to have effectiveness for the 2nd-degree kinship identification similar to the ForenSeq™ DNA Signature Prep Kit and certain advantages compared with it due to the relatively small number of loci. As expected, it provides new data for the development of NGS-STR typing technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00414-020-02295-z | DOI Listing |
Neuroendocrinology
September 2025
Introduction Neuroendocrine tumors (NETs) are a rare and heterogeneous group of neoplasms with both clinical and genetic diversity. The clinical applicability of molecular profiling using liquid biopsy for identifying actionable drug targets and prognostic indicators in patients with advanced NETs remains unclear. Methods In this study, we utilized a custom-made 37 genes panel of circulating tumor DNA (ctDNA) based on next-generation sequencing (NGS) in 47 patients with advanced NETs.
View Article and Find Full Text PDFIntroduction: Congenital Hypogonadotropic Hypogonadism (CHH) arises from defects in the synthesis, secretion, or action of gonadotropin-releasing hormone (GnRH), resulting in incomplete or absent pubertal development and various non-reproductive features. CHH is genetically heterogeneous, with over 50 genes implicated in its pathogenesis. This study aimed to elucidate the genetic variants of CHH in a cohort of patients from a single-center endocrinology unit.
View Article and Find Full Text PDFPediatr Dev Pathol
September 2025
The Hospital for Sick Children, Division of Pathology, Toronto, Canada.
Background: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. For stratification purposes, rhabdomyosarcoma is classified into fusion-positive RMS (alveolar rhabdomyosarcoma) and fusion-negative RMS (embryonal or spindle cell/sclerosing, FN-RMS) subtypes according to its fusion status. This study aims to highlight the pathologic and molecular characteristics of a cohort of FN-RMS using a targeted NGS RNA-Seq assay.
View Article and Find Full Text PDFJ Liq Biopsy
September 2025
Department of Clinical Oncology, Centre of Cancer Medicine, Li Ka Shing Faculty of Medicine, Hong Kong Special Administrative Region of China.
Background: Comprehensive genomic profiling is crucial for guiding treatment in advanced non-small cell lung cancer (NSCLC). However, tumor tissue-based targeted panel next-generation sequencing (TP-NGS) faces challenges, such as inadequate tissue sampling. Circulating tumor DNA (ctDNA) from peripheral blood has emerged as an alternative.
View Article and Find Full Text PDFMol Genet Genomics
September 2025
Human Phenome Institute, MOE Key Laboratory of Contemporary Anthropology, Zhangjiang Fudan International Innovation Center, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
Accurate variant calling is essential for next-generation sequencing (NGS)-based diagnosis of rare diseases, yet most benchmarking studies have focused on standard cell lines or trio-based samples, with limited relevance to sporadic cases. Here, we systematically compared the performance of DeepVariant and GATK HaplotypeCaller in two Chinese cohorts of patients with sporadic epilepsy (EP) and autism spectrum disorder (ASD). DeepVariant exhibited higher precision and sensitivity in detecting single nucleotide variants (SNVs), while GATK showed a distinct advantage in identifying rare variants, which are often key to understanding the genetic basis of rare diseases.
View Article and Find Full Text PDF