98%
921
2 minutes
20
Color-saturated red light-emitting diodes (LEDs) with emission wavelengths at around 620-640 nm are an essential part of high-definition displays. Metal halide perovskites with very narrow emission linewidth are promising emitters, and rapid progress has been made in perovskite-based LEDs (PeLEDs); however, the efficiency of the current color-pure red PeLEDs-still far lags behind those of other-colored ones. Here, a simple but efficient strategy is reported to gradually down-shift the Fermi level of perovskite nanocrystals (NCs) by controlling the interaction between NCs and their surface molecular electron acceptor-benzyl iodide with aromatic rings-and realize p-doping in the color-saturated 625 nm emitting NCs, which significantly reduces the hole injection barrier in devices. Besides, both the luminescence efficiency and electric conductivity of perovskite NCs are enhanced as additional advantages as the result of surface defects passivation. As a result, the external quantum efficiency for the resulting LED is increased from 4.5% to 12.9% after benzyl iodide treatment, making this device the best-performing color-saturated red PeLED so far. It is further found that the hole injection plays a more critical role than the photoluminescence efficiency of perovskite emitter in determining the LED performance, which implies design principles for efficient thin-film planar LEDs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202001062 | DOI Listing |
Sci Adv
July 2024
School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310027, China.
Perovskite light-emitting diodes (PeLEDs) provide excellent opportunities for low-cost, color-saturated, and large-area displays. However, the performance of blue PeLEDs lags far behind that of their green and red counterparts. Here, we show that the external quantum efficiencies (EQEs) of blue PeLEDs scale linearly with the photoluminescence quantum yields (PL QYs) of CsPb(BrCl) nanocrystals emitting at 460 to 480 nm.
View Article and Find Full Text PDFAdv Mater
September 2021
Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
Flat panel displays enjoy 100 billion-dollar markets with significant penetration in daily life, which require efficient, color-saturated blue, green, and red light-emitting diodes (LEDs). The recently emerged halide perovskites have demonstrated low-cost and outstanding performance for potential LED applications. However, the performance of blue perovskite LEDs (PeLEDs) lags far behind red and green cousins, particularly for color coordinates approaching (0.
View Article and Find Full Text PDFSmall
May 2020
Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai, 200072, China.
Color-saturated red light-emitting diodes (LEDs) with emission wavelengths at around 620-640 nm are an essential part of high-definition displays. Metal halide perovskites with very narrow emission linewidth are promising emitters, and rapid progress has been made in perovskite-based LEDs (PeLEDs); however, the efficiency of the current color-pure red PeLEDs-still far lags behind those of other-colored ones. Here, a simple but efficient strategy is reported to gradually down-shift the Fermi level of perovskite nanocrystals (NCs) by controlling the interaction between NCs and their surface molecular electron acceptor-benzyl iodide with aromatic rings-and realize p-doping in the color-saturated 625 nm emitting NCs, which significantly reduces the hole injection barrier in devices.
View Article and Find Full Text PDFJ Vis Exp
May 2018
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University;
Stable and efficient red (R), green (G), and blue (B) light sources based on solution-processed quantum dots (QDs) play important roles in next-generation displays and solid-state lighting technologies. The brightness and efficiency of blue QDs-based light-emitting diodes (LEDs) remain inferior to their red and green counterparts, due to the inherently unfavorable energy levels of different colors of light. To solve these problems, a device structure should be designed to balance the injection holes and electrons into the emissive QD layer.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2016
State Key Laboratory on Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun 130012, China.
The high photoluminescence efficiency, high color purity, and easy tunable bandgap make inorganic perovskite nanocrystals very attractive in luminescent display applications. Here, we report a color-saturated, red light-emitting diode (LED) using an inverted organic/inorganic hybrid structure and perovskite nanocrystals. We demonstrated that through a simple post treatment to the perovskite nanocrystals with polyethylenimine, the surface defects of the perovskite nanocrystals could be well passivated, leading to great enhancements on their absolute photoluminescence quantum yield and photoluminescence lifetime.
View Article and Find Full Text PDF