98%
921
2 minutes
20
Nitrogen (N )-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N -fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N -fixation rates of Hylocomium splendens and Pleurozium schreberi. We conducted a moss transplant and leaf litter manipulation experiment at three sites with paired paper birch (Betula neoalaskana) and black spruce (Picea mariana) stands in Alaska. We characterized bacterial communities using marker gene sequencing, determined N -fixation rates using stable isotopes ( N ) and measured environmental covariates. Mosses native to and transplanted into spruce stands supported generally higher N -fixation and distinct microbial communities compared to similar treatments in birch stands. High leaf litter inputs shifted microbial community composition for both moss species and reduced N -fixation rates for H. splendens, which had the highest rates. N -fixation was positively associated with several bacterial taxa, including cyanobacteria. The moss microbiome and environmental conditions controlled N -fixation at the stand and transplant scales. Predicted shifts from spruce- to deciduous-dominated stands will interact with the relative abundances of mosses supporting different microbiomes and N -fixation rates, which could affect stand-level N inputs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16611 | DOI Listing |
Oecologia
September 2025
Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
Beech leaf disease (BLD) poses a serious threat to the health of beech forests throughout the northeastern USA and Canada. Caused by invasive nematodes, BLD first appeared in 2012 in Ohio and has rapidly spread eastward. We investigated the effects of BLD on leaf and litter chemistry and leaf litter decomposition rate from four infected beech stands in Falmouth, Massachusetts.
View Article and Find Full Text PDFPest Manag Sci
September 2025
IRTA, Fruit Production Program, Fruitcentre, Lleida, Catalonia, Spain.
Background: Red leaf blotch (RLB), caused by Polystigma amygdalinum, is a major foliar disease of almond trees in Mediterranean and Middle Eastern regions. While preventive fungicide applications are the main control strategy, cultural practices aimed at reducing pathogen inoculum in leaf litter are gaining relevance. This study evaluated the efficacy of four chemical treatments on fungal biomass and ascospore production in leaf litter and assessed the impact of two cultural practices-urea application and leaf litter removal-on airborne inoculum levels and disease incidence under field conditions.
View Article and Find Full Text PDFFungal Biol
October 2025
School of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu Province, China. Electronic address:
Urban green areas are vital yet underexplored reservoirs of microbial diversity in cities. This study examines myxomycete communities in Zijin Mountain National Forest Park, a subtropical urban forest in Nanjing, China, across four seasons and multiple forest types. Combining field collections and moist chamber cultures, we documented 60 species from 906 occurrence records.
View Article and Find Full Text PDFZookeys
August 2025
Instituto Nacional de Biodiversidad, Quito, Ecuador Instituto Nacional de Biodiversidad Quito Ecuador.
Twelve new species of Fletcher, 1927 (Coleoptera: Staphylinidae: Pselaphinae: Euplectitae: Metopiasini) from Ecuador are described: , , , , , , , , , , , and A key for all species of is provided. These are the first records of the genus for the country, and we report species from most major environments in the country, from seasonal coastal forests to cloud forests and the Amazonian Basin. The new species expand the scope of morphological variability in the genus, with discovery of numerous microphthalmous and wingless species, and a range of previously unreported secondary sexual characters.
View Article and Find Full Text PDFEcotoxicol Environ Saf
August 2025
Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, China.
Antidepressants are often found in freshwater ecosystems, yet their potential impacts on ecological processes and species interactions remain poorly understood. This study assessed the ecological influence of fluoxetine and amitriptyline at environmentally realistic levels (1-100 ng L) on a detritus-based food chain that encompasses microbial decomposers and freshwater snails. In the experiment, we monitored the responses of microbial decomposers (biomass and enzyme activity), and Cipangopaludina cathayensis (consumption rates and antioxidant capacity), as well as leaf litter traits (decomposition rate and nutrient content).
View Article and Find Full Text PDF