Publications by authors named "Michelle C Mack"

Climate change has increased the size and frequency of wildfires across the boreal biome. Severe wildfires in boreal forests have been found to trigger shifts from evergreen to deciduous canopies, which has cascading effects on carbon and nitrogen cycling. Ecosystem productivity and carbon uptake in boreal forests are strongly linked with nitrogen, and Earth system models increasingly depend on our understanding of the nitrogen balance to predict post-fire carbon uptake.

View Article and Find Full Text PDF

Siberian boreal forests have experienced increases in fire extent and intensity in recent years, which may threaten their role as carbon (C) sinks. Larch forests (Larix spp.) cover approximately 2.

View Article and Find Full Text PDF

Fire regimes are changing across the globe, with new wildfire behaviour phenomena and increasing impacts felt, especially in ecosystems without clear adaptations to wildfire. These trends pose significant challenges to the scientific community in understanding and communicating these changes and their implications, particularly where we lack underlying scientific evidence to inform decision-making. Here, we present a perspective on priority directions for wildfire science research-through the lens of academic and government wildfire scientists from a historically wildfire-prone (USA) and emerging wildfire-prone (UK) country.

View Article and Find Full Text PDF

The below-ground growing season often extends beyond the above-ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above- and below-ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above- and below-ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine-root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome.

View Article and Find Full Text PDF

Climate warming is increasing the prevalence of overwintering 'zombie' fires, which are expected to occur primarily in peatlands, undermining carbon storage through deep burning of organic soils. We visited overwintering fires in Northwest Territories, Canada, and Interior Alaska, United States, and present field measurements of where overwintering fires are burning in the landscape and their impact on combustion severity and forest regeneration. Combustion severity hotspots did not generate overwintering, but peat and woody biomass smouldering both supported overwintering, leading to wintertime smouldering in both treed peatlands and upland forests.

View Article and Find Full Text PDF

Understanding the factors influencing species range limits is increasingly crucial in anticipating migrations due to human-caused climate change. In the boreal biome, ongoing climate change and the associated increases in the rate, size, and severity of disturbances may alter the distributions of boreal tree species. Notably, Interior Alaska lacks native pine, a biogeographical anomaly that carries implications for ecosystem structure and function.

View Article and Find Full Text PDF

Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems.

View Article and Find Full Text PDF

Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain.

View Article and Find Full Text PDF

Deciduous tree cover is expected to increase in North American boreal forests with climate warming and wildfire. This shift in composition has the potential to generate biophysical cooling via increased land surface albedo. Here we use Landsat-derived maps of continuous tree canopy cover and deciduous fractional composition to assess albedo change over recent decades.

View Article and Find Full Text PDF

Unlabelled: Resilience of plant communities to disturbance is supported by multiple mechanisms, including ecological legacies affecting propagule availability, species' environmental tolerances, and biotic interactions. Understanding the relative importance of these mechanisms for plant community resilience supports predictions of where and how resilience will be altered with disturbance. We tested mechanisms underlying resilience of forests dominated by black spruce () to fire disturbance across a heterogeneous forest landscape in the Northwest Territories, Canada.

View Article and Find Full Text PDF
Article Synopsis
  • - Increased Arctic temperatures are causing permafrost to thaw and enhancing microbial activity in tundra soils, releasing greenhouse gases that further contribute to climate change.
  • - A study examining the growth responses of soil bacteria under short-term (3 months) and long-term (29 years) warming found that short-term warming led to a 36% increase in microbial growth rates, while long-term warming resulted in a more significant 151% increase largely among existing taxa.
  • - The research highlights that bacteria respond differently to varying durations of warming, suggesting that understanding these microbial reactions is crucial as soil carbon stocks in tundra become more vulnerable due to climate change impacts.
View Article and Find Full Text PDF

Bigger wildfires in the Siberian Arctic signal release of more carbon to the atmosphere.

View Article and Find Full Text PDF

Wildfire frequency and extent is increasing throughout the boreal forest-tundra ecotone as climate warms. Understanding the impacts of wildfire throughout this ecotone is required to make predictions of the rate and magnitude of changes in boreal-tundra landcover, its future flammability, and associated feedbacks to the global carbon (C) cycle and climate. We studied 48 sites spanning a gradient from tundra to low-density spruce stands that were burned in an extensive 2013 wildfire on the north slope of the Alaska Range in Denali National Park and Preserve, central Alaska.

View Article and Find Full Text PDF

Intensifying wildfire activity and climate change can drive rapid forest compositional shifts. In boreal North America, black spruce shapes forest flammability and depends on fire for regeneration. This relationship has helped black spruce maintain its dominance through much of the Holocene.

View Article and Find Full Text PDF
Article Synopsis
  • The carbon stored in soil plays a crucial role in global climate stability, surpassing carbon in plants and the atmosphere, with decomposer microorganisms significantly influencing soil carbon dynamics.
  • A 15-year warming experiment showed a consistent decrease in soil microbial growth rates, regardless of taxa, suggesting uniform responses to temperature changes across different microbial groups.
  • Long-term warming resulted in reduced soil carbon content and microbial biomass, indicating that the impacts of warming on microbial growth and soil health could contribute to feedback mechanisms affecting climate change.
View Article and Find Full Text PDF

Moss-associated N fixation by epiphytic microbes is a key biogeochemical process in nutrient-limited high-latitude ecosystems. Abiotic drivers, such as temperature and moisture, and the identity of host mosses are critical sources of variation in N fixation rates. An understanding of the potential interaction between these factors is essential for predicting N inputs as moss communities change with the climate.

View Article and Find Full Text PDF
Article Synopsis
  • Predation plays a crucial role in ecosystems, impacting food webs, energy flow, and nutrient cycling, though most research has focused on larger predators rather than microscopic ones like bacteria.
  • This study found that obligate predatory bacteria exhibited significantly higher growth and carbon uptake (36% and 211% more, respectively) compared to nonpredatory bacteria across various environments, while facultative predators showed only slightly enhanced rates.
  • The research indicates that increased energy flow in microbial communities boosts the role of predatory bacteria, suggesting that more productive environments lead to stronger predatory influence on lower trophic levels.
View Article and Find Full Text PDF

In boreal forests, climate warming is shifting the wildfire disturbance regime to more frequent fires that burn more deeply into organic soils, releasing sequestered carbon to the atmosphere. To understand the destabilization of carbon storage, it is necessary to consider these effects in the context of long-term ecological change. In Alaskan boreal forests, we found that shifts in dominant plant species catalyzed by severe fire compensated for greater combustion of soil carbon over decadal time scales.

View Article and Find Full Text PDF
Article Synopsis
  • Microorganisms play a crucial role in breaking down soil carbon, and their activity can change with rising temperatures, potentially influencing climate change.
  • This study investigates how different bacterial groups from various climates (Arctic, boreal, temperate, and tropical) respond to temperature changes, revealing that each group's growth sensitivity to temperature varies.
  • The research indicates that the traits of these bacterial communities can help predict how carbon cycling will respond to climate change globally.
View Article and Find Full Text PDF

Background: Mosses in high-latitude ecosystems harbor diverse bacterial taxa, including N-fixers which are key contributors to nitrogen dynamics in these systems. Yet the relative importance of moss host species, and environmental factors, in structuring these microbial communities and their N-fixing potential remains unclear. We studied 26 boreal and tundra moss species across 24 sites in Alaska, USA, from 61 to 69° N.

View Article and Find Full Text PDF

It is well documented that warming can accelerate greenhouse gas (GHG) emissions, further inducing a positive feedback and reinforcing future climate warming. However, how different kinds of GHGs respond to various warming magnitudes remains largely unclear, especially in the cold regions that are more sensitive to climate warming. Here, we concurrently measured carbon dioxide (CO), methane (CH), and nitrous oxide (NO) fluxes and their total balance in an alpine meadow in response to three levels of warming (ambient, +1.

View Article and Find Full Text PDF

We tested whether post-fire seedling establishment of common boreal tree and expanding shrub species at treeline and in Arctic tundra is facilitated by co-migration of boreal forest mycorrhizal fungi. Wildfires are anticipated to facilitate biome shifts at the forest-tundra ecotone by improving seedbed conditions for recruiting boreal species; at the same time fire alters the composition and availability of mycorrhizal fungi critical to seedling performance. To determine the role of root-associated fungi (RAF) in post-fire seedling recruitment and future biome shifts, we outplanted four dominant boreal tree and shrub species inoculated with one of three treatments at treeline and in tundra: burned boreal forest, unburned boreal forest, or a control treatment of sterilized inoculum.

View Article and Find Full Text PDF

Boreal wildfires are increasing in intensity, extent, and frequency, potentially intensifying carbon emissions and transitioning the region from a globally significant carbon sink to a source. The productive southern boreal forests of central Canada already experience relatively high frequencies of fire, and as such may serve as an analog of future carbon dynamics for more northern forests. Fire-carbon dynamics in southern boreal systems are relatively understudied, with limited investigation into the drivers of pre-fire carbon stocks or subsequent combustion.

View Article and Find Full Text PDF

Nitrogen (N )-fixing moss microbial communities play key roles in nitrogen cycling of boreal forests. Forest type and leaf litter inputs regulate moss abundance, but how they control moss microbiomes and N -fixation remains understudied. We examined the impacts of forest type and broadleaf litter on microbial community composition and N -fixation rates of Hylocomium splendens and Pleurozium schreberi.

View Article and Find Full Text PDF

Fire is a primary disturbance in boreal forests and generates both positive and negative climate forcings. The influence of fire on surface albedo is a predominantly negative forcing in boreal forests, and one of the strongest overall, due to increased snow exposure in the winter and spring months. Albedo forcings are spatially and temporally heterogeneous and depend on a variety of factors related to soils, topography, climate, land cover/vegetation type, successional dynamics, time since fire, season, and fire severity.

View Article and Find Full Text PDF