98%
921
2 minutes
20
Iridium oxide powders with a surface area of more than 1 m g (4 m g from the H-UPD charge) and iridium-oxide crystallites less than 10 nm across were synthesized by heat treating gels formed from citric acid, ethylene glycol and dihydrogen hexachloroiridate(iv) in air. The characteristics of the resulting material was found to be strongly dependent on the heat-treatment step in the synthesis. A single heat-treatment of the gel resulted in a material with a substantial fraction of elemental iridium metal, i.e. iridium in oxidation state zero (Ir). Post-synthesis modification of the powder by potential cycling resulted in oxidation peaks consistent with the conversion of the metal phase to iridium oxide. Linear combination of the near-edge part of the X-ray absorption data (X-ray absorption near-edge spectroscopy, XANES) collected in situ during potential cycling and an analysis of the extended X-ray fine-structure (EXAFS) part of the spectrum showed that the overall metal fraction was not significantly affected by the cycling. The oxidation of the metal phase is therefore limited to a thin layer of oxide at the metal surface, and a significant part of the iridium is left inactive. A modification of the heat treatment procedure of the sample resulted in iridium oxide containing only insignificant amounts of elemental iridium metal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cp00217h | DOI Listing |
Nanoscale
September 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China.
Proton exchange membrane water electrolysis (PEMWE) is regarded as the most promising technique for the sustainable production of green hydrogen due to its multiple advantages such as high working current density and high hydrogen purity. However, the anodic oxygen evolution reaction (OER) has a significant impact on the overall efficiency of the electrolytic water reaction due to its sluggish kinetics, which has prompted the search for catalysts possessing both high activity and durability. Iridium oxide exhibits excellent stability under acidic conditions but has poor catalytic activity, leading to its inability to meet the strict requirements of large-scale industrial applications.
View Article and Find Full Text PDFMater Horiz
September 2025
New Cornerstone Science Laboratory, State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
Dispersing iridium onto high-specific-surface-area supports is a widely adopted strategy to maximize iridium utilization in anode catalysts of proton exchange membrane water electrolysis (PEMWE). However, here we demonstrate that the overall cell performance, including initial efficiency and long-term stability, does not benefit from the typical high specific surface area of catalyst supports. The conventional understanding that high iridium utilization on high-specific-surface-area supports increases activity holds only in aqueous electrolytes, while under the typical working conditions of PEMWE, the mass transport within the anode catalyst layers plays a more significant role in the overall performance.
View Article and Find Full Text PDFBiosensors (Basel)
August 2025
Tyndall National Institute, T12R5CP Cork, Ireland.
This study presents the in vitro and preliminary ex vivo development of a novel microneedle-based pH sensor for continuous intrapartum fetal monitoring. The objective was to evaluate the feasibility of using microneedle sensors to monitor fetal pH during labour and to develop a proof-of-principle microneedle pH sensor that meets clinical requirements such as high sensitivity to small pH changes (0.05 units) within a relevant range (6.
View Article and Find Full Text PDFBiomed Phys Eng Express
September 2025
Micro- and Nanosystems (MNS), Department of Electrical Engineering (ESAT), KU Leuven, Leuven, 3000, Belgium.
The combination of excellent stimulation properties and long-term stability of electrodes is key in the development of a clinical neural prosthesis for intracortical stimulation. Iridium oxide combines both characteristics, but its quality is highly dependent on the exact fabrication parameters. In this study, the fabrication of sputtered iridium oxide films (SIROFs) was investigated in terms of oxygen flow, sputtering power and sputtering time.
View Article and Find Full Text PDFSci Rep
August 2025
University of Auckland, Auckland, New Zealand.
Recording directly from the spinal cord surface in freely behaving animals provides a promising means to investigate spinal electrophysiology, typically examined in stimulation experiments or during controlled behaviour. In a two-week experiment, we extract high-frequency spiking activity in control and spinal cord injured rats during freely behaving, open-field recording sessions. Electrical signals were recorded using sputtered iridium oxide (SIROF) electrodes on a polyimide-based, flexible probe surgically inserted beneath the dura of the spinal column, with electrodes in direct contact with the thoracic and lumbar spinal cord.
View Article and Find Full Text PDF