Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Earth's population will become more than 80% urban during this century. This threshold is often regarded as sufficient justification for pursuing urban ecology. However, pursuit has primarily focused on building empirical richness, and urban ecology theory is rarely discussed. The Baltimore Ecosystem Study (BES) has been grounded in theory since its inception and its two decades of data collection have stimulated progress toward comprehensive urban theory. Emerging urban ecology theory integrates biology, physical sciences, social sciences, and urban design, probes interdisciplinary frontiers while being founded on textbook disciplinary theories, and accommodates surprising empirical results. Theoretical growth in urban ecology has relied on refined frameworks, increased disciplinary scope, and longevity of interdisciplinary interactions. We describe the theories used by BES initially, and trace ongoing theoretical development that increasingly reflects the hybrid biological-physical-social nature of the Baltimore ecosystem. The specific mix of theories used in Baltimore likely will require modification when applied to other urban areas, but the developmental process, and the key results, will continue to benefit other urban social-ecological research projects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138672PMC
http://dx.doi.org/10.1093/biosci/biz166DOI Listing

Publication Analysis

Top Keywords

urban ecology
16
baltimore ecosystem
12
urban
9
ecosystem study
8
ecology theory
8
theoretical perspectives
4
baltimore
4
perspectives baltimore
4
study conceptual
4
conceptual evolution
4

Similar Publications

Targeted 'infectiosome' for disease ecology: A new tool to answer old questions.

J Anim Ecol

September 2025

Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Paris, France.

Research Highlight: Bralet, T., Aaziz, R., Tornos, J.

View Article and Find Full Text PDF

Reduced phenological differences under nitrogen enrichment facilitate invasion by a late-growing plant.

New Phytol

September 2025

State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, Yunnan, China.

Although invasion success is often attributed to the early phenology of the invader, many late-growing invaders also thrive in resource-enriched environments. However, the mechanism behind this paradox remains poorly understood. Here, we tested how nitrogen (N) enrichment influences competition between the late-growing invader Spartina alterniflora and the early-growing native Phragmites australis in a coastal salt marsh.

View Article and Find Full Text PDF

Using microplastic-carbon to reassess pollution level of microplastics in urban rivers.

J Hazard Mater

September 2025

Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China. Electronic address:

Environmental microplastics (MPs) are challenging to compare due to non-harmonized sampling and quantification methods. As MPs are predominantly composed of recalcitrant organic carbon (OC), they contribute to the total organic carbon (TOC) pool in environments. The concentration of recalcitrant carbon in microplastics (MPC) can theoretically serve as a complementary, standardized mass-based index to characterize MPs pollution levels.

View Article and Find Full Text PDF

Soil Carbon Availability Drives Depth-Dependent Responses of Microbial Nitrogen Use Efficiency to Warming.

Glob Chang Biol

September 2025

State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.

Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.

View Article and Find Full Text PDF

Response Modes of Global Vegetation to Extreme Drought.

Glob Chang Biol

September 2025

State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Institute of Ecology, and College of Urban and Environmental Sciences, Peking University, Beijing, China.

Increasingly frequent extreme droughts pose a serious threat to global vegetation. However, previous studies have not characterized the whole response process of vegetation to drought, and there are uncertainties in their methods and indicators. In this study, we developed a new indicator system and derived the response modes of global vegetation to extreme drought.

View Article and Find Full Text PDF