98%
921
2 minutes
20
The complex and highly organized environment in which cells reside consists primarily of the extracellular matrix (ECM) that delivers biological signals and physical stimuli to resident cells. In the native myocardium, the ECM contributes to both heart compliance and cardiomyocyte maturation and function. Thus, myocardium regeneration cannot be accomplished if cardiac ECM is not restored. We hypothesize that decellularized human skin might make an easily accessible and viable alternate biological scaffold for cardiac tissue engineering (CTE). To test our hypothesis, we decellularized specimens of both human skin and human myocardium and analyzed and compared their composition by histological methods and quantitative assays. Decellularized dermal matrix was then cut into 600-μm-thick sections and either tested by uniaxial tensile stretching to characterize its mechanical behavior or used as three-dimensional scaffold to assess its capability to support regeneration by resident cardiac progenitor cells (hCPCs) . Histological and quantitative analyses of the dermal matrix provided evidence of both effective decellularization with preserved tissue architecture and retention of ECM proteins and growth factors typical of cardiac matrix. Further, the elastic modulus of the dermal matrix resulted comparable with that reported in literature for the human myocardium and, when tested , dermal matrix resulted a comfortable and protective substrate promoting and supporting hCPC engraftment, survival and cardiomyogenic potential. Our study provides compelling evidence that dermal matrix holds promise as a fully autologous and cost-effective biological scaffold for CTE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7099865 | PMC |
http://dx.doi.org/10.3389/fbioe.2020.00229 | DOI Listing |
Mater Today Bio
October 2025
Radboud University Medical Center, Research Institute for Medical Innovation, Department of Medical BioSciences, Geert Grooteplein 28, 6525 GA, Nijmegen, the Netherlands.
Severe scarring is an inevitable consequence of large full-thickness skin wounds, often leading to long-term complications that affect patients' well-being and necessitate extended medical interventions. While autologous split-thickness skin grafts remain the clinical standard for wound treatment, they frequently result in contractures, excessive scarring, and the need for additional corrective procedures. To address these challenges, bioengineered skin substitutes capable of promoting efficient healing while reducing complications are highly desirable.
View Article and Find Full Text PDFInjury
August 2025
Department of Trauma Surgery, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland; Center for Preclinical Development, University and University Hospital of Zurich, Raemistr. 100, 8091 Zurich, Switzerland. Electronic address:
Background: Critical size bone defects represent a clinical challenge, associated with considerable morbidity, and frequently trigger the requirement of secondary procedure. To fill osseous gaps, multiple steps are required, such as proliferation and differentiation on the cellular level and the building of extracellular matrix. In addition, the osteogenic potential of cell-derived extracellular matrices (CD-ECM) is known to enhance bone healing.
View Article and Find Full Text PDFAnn Plast Surg
September 2025
From the University of Tennessee Health Sciences Center-College of Medicine, Chattanooga, TN.
Introduction: Implant-based breast reconstruction after skin-sparing mastectomy remains one of the most frequently used methods of breast reconstruction in the US. Patients with large, ptotic breasts often face poorer outcomes. We hypothesized that implant-based breast reconstruction with auto-augmentation techniques can minimize problems with acellular dermal matrices (ADM) by using less, and providing the benefit of prepectoral placement.
View Article and Find Full Text PDFMol Med Rep
November 2025
Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.
Aberrant extracellular matrix (ECM) production by dermal fibroblasts drives fibrotic skin diseases, which has an adverse impact on the lives of patients. Current treatments are limited; therefore, the development of new antifibrotic strategies is necessary. The aim of the present study was to investigate zinc finger 469 (ZNF469) as a potential ECM regulator in skin fibrosis.
View Article and Find Full Text PDFChronic wounds represent significant challenges to the healthcare system. Their incidence increases with increase in age, especially in individuals suffering from chronic disorders like diabetes. The process of wound healing consists of a series of coordinated biological events triggered by tissue damage, ultimately leading to the repair and restoration of damaged tissues.
View Article and Find Full Text PDF