Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Biodegradable inorganic mesoporous materials hold promise for various biomedical applications such as drug/gene delivery, bioimaging, and photodynamic/photothermal and ultrasound therapy. Herein, multifunctional mesoporous microspheres of europium-doped amorphous calcium phosphate (Eu-doped ACP) have been prepared using a natural biomolecule adenosine triphosphate (ATP) by the rapid microwave-assisted solvothermal method. This method has advantages such as surfactant-free, rapid and energy-saving. The ATP molecule plays key roles as a phosphate source and a structure mediator. Furthermore, the Eu-doped ACP mesoporous microspheres exhibit advantages such as high specific surface area (from 253 to 315 m g), high biocompatibility, pH-responsive drug release, and in vitro/in vivo fluorescence imaging properties. The mechanism of pH-responsive drug release can be explained by the degradation of ACP mesoporous microspheres at low pH. The docetaxel-loaded Eu-doped ACP mesoporous microspheres showed good anticancer performance in vitro. The as-prepared Eu-doped ACP mesoporous microspheres are promising for applications in drug delivery, tissue engineering, bioimaging, etc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4tb01193g | DOI Listing |