Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

β-Chitinous scaffolds isolated from the skeleton of marine cephalopod Sepia officinalis were used as a template for the in vitro formation of ZnO under conditions (70 °C) which are extreme for biological materials. Novel β-chitin/ZnO film-like composites were prepared for the first time by hydrothermal synthesis, and were thoroughly characterized using numerous analytical methods including Raman spectroscopy, HR-TEM and XRD. We demonstrate the growth of hexagonal ZnO nanocrystals on the β-chitin substrate. Our chitin/ZnO composites presented in this work show antibacterial properties against Gram positive bacteria and can be employed for development of inorganic-organic wound dressing materials.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3tb21186jDOI Listing

Publication Analysis

Top Keywords

hydrothermal synthesis
8
extreme biomimetic
4
biomimetic approach
4
approach hydrothermal
4
synthesis β-chitin/zno
4
β-chitin/zno nanostructured
4
nanostructured composites
4
composites β-chitinous
4
β-chitinous scaffolds
4
scaffolds isolated
4

Similar Publications

In this study, a one-pot hydrothermal synthesis method was used to synthesize a novel gold-yttrium trimesic acid metal-organic framework (Au-Y-TMA MOF), demonstrating significant improvements over conventional single-metal MOFs, that is, yttrium trimesic acid (Y-TMA), in both supercapacitor applications and electrochemical antibiotic detection. The X-ray diffraction patterns of Au-Y-TMA confirmed the presence and impact of Au in the Y-TMA matrix, while field emission scanning electron microscopy (FE-SEM) images revealed a heterogeneous combination of gold nanoparticles (AuNPs) and Y-TMA, suggesting a nonuniform distribution and possible interaction. The developed half-cell supercapacitor exhibited a remarkable capacitance value of 1836 F/g at a current density of 5 A/g by galvanostatic charging-discharging (GCD) measurement.

View Article and Find Full Text PDF

SnS (tin disulfide) is a promising anode active material for lithium-ion batteries (LIBs) due to its high theoretical capacity and low material cost. Conventional synthesis methods, such as solvothermal, hydrothermal, and solid-state, require long synthesis times, the use of solvents and surfactants, and several separation steps. However, the preparation of coated SnS composites using liquid media is even more complex, requiring suitable precursors, compatible solvents, and potentially several steps.

View Article and Find Full Text PDF

Controllable synthesis of -hexagonal ZnAl-LDHs nanosheets for high-performance room-temperature ethanol gas sensing.

Dalton Trans

September 2025

School of Electronics and Information Engineering, Hebei University of Technology, Tianjin Key Laboratory of Electronic Materials and Devices, 5340 Xiping Road, Beichen District, Tianjin, 300401, China.

Layered double hydroxides (LDHs) have attracted considerable attention in gas sensing applications due to their highly tunable chemical composition and unique two-dimensional layered architecture. In this study, a series of ZnAl-LDHs with varying Zn/Al molar ratios were synthesized a facile hydrothermal method, and their ethanol sensing performance at room temperature was systematically evaluated. The influence of composition on the structural, morphological, and electronic properties of the materials was thoroughly investigated using a suite of characterization techniques, including XRD, FTIR, SEM, TEM, BET, XPS, PL, and EPR.

View Article and Find Full Text PDF

Here, Ln-Li co-doped YO@ZnO core-shell heterostructures were synthesized by three different techniques - intermediate layer conversion method, a hydrothermal method, and an interlayer mediated hydrothermal method. The synthesis procedure is optimized based on the thickness and compactness of the developed shell. The growth kinetics and synthesis mechanism of each adopted method have been explained in detail using XRD, FESEM, TEM, SAED, and EDX characterization techniques.

View Article and Find Full Text PDF

A CuBiO/TiO p-n Heterojunction for Enhancing the Barrier Protection of a Nickel-Based Layer on the Magnesium Alloy.

J Phys Chem Lett

September 2025

Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.

Herein, CuBiO microspheres were first deposited on TiO nanotube arrays to develop a p-n CuBiO/TiO heterojunction by a facile hydrothermal protocol. The variations in the photoinduced open-circuit potential, photocurrent, and electrochemical parameters of the nickel-plated magnesium alloy (Mg/Ni) demonstrated the remarkably strengthened photoelectrochemical efficiency and photocathodic protection (PCP) capability caused by the CuBiO modification. This enhancement is attributed to establishing a built-in electric field and intensified light absorption in a broadened wavelength spectrum, confirmed by the valence band XPS and ultraviolet-visible spectra.

View Article and Find Full Text PDF