Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

is considered as foremost cause of hospital acquired infections due to its innate and plasmid mediated resistance to multiple antibiotics making it a multi drug resistant (MDR) pathogen. Biofilm formation is a pathogenic mechanism harbored by this pathogen which further elevates its resistance to antibiotics and host defense system. The aim of the present study was to evaluate the biofilm forming potential and distribution of A gene in multi drug resistant isolates obtained from different clinical samples. A total of 200 different clinical samples were collected after obtaining written consent from the patients. The samples were subjected to isolation and identification of by standard microbiological procedures. Confirmation of isolates was done by polymerase chain reaction targeting L gene. Kirby Bauer method was performed for detection of MDR isolates. Congo red agar (CRA) test and Microtiter plate assay (MPA) for observing the biofilm forming ability and amplification of A gene was also performed on MDR isolates. The results showed that from 200 samples 52 (26 %) were and among them 20 (38.46 %) were MDR isolates. The CRA showed 23 (44.23 %) while MPA detected 49 (94.23 %) isolates as biofilm producers while all the MDR isolates showed biofilm formation by MPA method. The A gene was detected in all biofilm forming isolates while 90 % in MDR . It was concluded that biofilm forming are more resistant to tested antibiotics and biofilm formation is strongly associated with presence of A gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105944PMC
http://dx.doi.org/10.17179/excli2019-2049DOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
biofilm forming
16
mdr isolates
16
multi drug
12
isolates
9
drug resistant
8
biofilm
8
clinical samples
8
isolates biofilm
8
mdr
6

Similar Publications

Background And Objective: Traditional and planimetric plaque indices rely on plaque-disclosing agents and cannot quantify three-dimensional (3D) structures of dental biofilms. We introduce a novel computer-assisted method for evaluating and visualising plaque volume using intraoral scans (IOSs).

Materials And Methods: This was a 4-day, non-brushing, plaque-regrowth study (n = 15).

View Article and Find Full Text PDF

Zeolitic imidazolate framework-8 nanoparticles: A promising nano-antimicrobial agent for sustainable management of bacterial leaf streak in rice.

Pestic Biochem Physiol

November 2025

State Key Laboratory of Agricultural and Forestry Biosecurity & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China. Electronic address:

Rice bacterial leaf streak (BLS) caused by Xanthomonas oryzae pv. oryzicola (Xoc) significantly reduces rice yield and quality. Traditional chemical control methods often have limited efficacy and raise environmental concerns, highlighting the need for safer and more effective alternatives.

View Article and Find Full Text PDF

Long-term large-scale application of acetochlor has led to its accumulation in soil, causing serious environmental pollution. In this study, Klebsiella michiganensis ES15 was isolated from the contaminated reactive sludge of an acetochlor pesticide plant and achieved 79.23 % degradation of acetochlor within 4 d after medium optimization using response surface methodology.

View Article and Find Full Text PDF

Moh1 coordinates ROS-dependent apoptosis in genotoxic stress response of Candida albicans.

Fungal Biol

October 2025

Department of Pathogen Biology, School of Medicine, Nantong University, 226007, Nantong, Jiangsu, China. Electronic address:

Candida albicans employs apoptosis to maintain genomic stability under genotoxic stress, yet its regulatory mechanisms remain poorly defined. Here, we characterize the role of a putative pro-apoptotic factor Moh1 in C. albicans.

View Article and Find Full Text PDF

Bacterial infections have emerged as a critical global health concern. More specifically, antibiotic resistant infections, severely compromise the effectiveness of standard antimicrobial therapies and prompting the exploration of alternative strategies. Among these, nanocarriers (NCs) have gained considerable interest due to their ability to improve drug solubility, stability, and targeted delivery while minimizing off-target effects.

View Article and Find Full Text PDF