Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exportin-1 (also named as CRM1) plays a prominent role in autoimmune disorders and has emerged as a potential therapeutic target for colitis. Here we report on the rational structure-based discovery of a small-molecule antagonist of exportin-1, LFS-829, with low-range nanomolar activities. The co-crystallographic structure, surface plasmon resonance binding assay, and cell-based phenotypic nuclear export functional assay validated that exportin-1 is a key target of LFS-829. Moreover, we demonstrated that the C528S mutation or the knockdown on exportin-1 can abolish the cellular activities of LFS-829. Strikingly, oral administration of LFS-829 can significantly reverse the pathological features of colitis model mice. We revealed that LFS-829 can attenuate dual NF-κB signaling and the Nrf2 cytoprotection pathway via targeting exportin-1 in colitis mice. Moreover, LFS-829 has a very low risk of cardiotoxicity and acute toxicity. Therefore, LFS-829 holds great promise for the treatment of colitis and may warrant translation for use in clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.9b01663DOI Listing

Publication Analysis

Top Keywords

small-molecule antagonist
8
targeting exportin-1
8
rational structure-based
8
structure-based discovery
8
lfs-829
7
exportin-1
6
antagonist targeting
4
exportin-1 rational
4
discovery exportin-1
4
exportin-1 named
4

Similar Publications

Methylmalonic acidemia (MMA) is a severe metabolic disorder affecting multiple organs because of a distal block in branched-chain amino acid (BCAA) catabolism. Standard of care is limited to protein restriction and supportive care during metabolic decompensation. Severe cases require liver/kidney transplantation, and there is a clear need for better therapy.

View Article and Find Full Text PDF

Death-associated protein kinase 1: a double-edged sword in health and disease.

Front Immunol

September 2025

The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, College of Integrative Medicine, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Fujian-Hong Kong-Macau-Taiwan Collaborative

Death-associated protein kinase 1 (DAPK1) is a Ca/calmodulin-regulated serine/threonine kinase that orchestrates a wide array of cellular activities. It is intricately regulated through multiple mechanisms, including intramolecular signaling and interactions with other proteins, such as kinases and phosphatases. DAPK1 plays a pivotal role in regulating various biological processes, including apoptosis and autophagy, and is implicated in pathogenesis of several disorders, such as cancer, stroke and brain damage, neurodegenerative and within their kinase domains.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

μ-Opioid receptor (MOR) agonists are a mainstay in acute pain management. However, they also produce adverse effects and are frequently misused, increasing susceptibility for opioid use disorder. Thus, a strategy for improving the safety of opioid analgesics is needed.

View Article and Find Full Text PDF

Erratum to "A highly potent small-molecule antagonist of exportin-1 selectively eliminates CD44 CD24- enriched breast cancer stem-like cells" [Drug Resist. Updates 66 (2023) 100903].

Drug Resist Updat

September 2025

Department of Oncology, Cancer Stem Cell and Translational Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang 110004, China; School of Bioengineering, Dalian University of Technology, Dalian

View Article and Find Full Text PDF