A functional scaffold to promote the migration and neuronal differentiation of neural stem/progenitor cells for spinal cord injury repair.

Biomaterials

State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China. Electronic address:

Published: June 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

After spinal cord injury (SCI), endogenous neural/progenitor stem cells (NSPCs) were activated in neural tissue adjacent to the injured segment, but few cells migrated to the injury epicenter and differentiated into neurons. N-cadherin regulates mechanical adhesion between NSPCs, and also drives NSPCs migration and promotes NSPCs differentiation. In this study, linearly ordered collagen scaffold (LOCS) was modified with N-cadherin through a two-step cross-linking between thiol and amino group. The results indicated that N-cadherin modification improved the adhesion of NSPCs on collagen scaffold and increased the differentiation into neurons. When LOCS-Ncad was transplanted into complete transected rat spinal cords, more NSPCs migrated to the lesion center and more newborn neurons appeared within the injury site. Furthermore, rats transplanted with LOCS-Ncad showed significantly improved locomotor recovery compared with the rats without implants. Collectively, our results suggest that LOCS-Ncad may be a promising treatment option to facilitate SCI repair by recruiting endogenous NSPCs to the lesion center and promoting neuronal differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2020.119941DOI Listing

Publication Analysis

Top Keywords

neuronal differentiation
8
spinal cord
8
cord injury
8
adhesion nspcs
8
collagen scaffold
8
lesion center
8
nspcs
7
functional scaffold
4
scaffold promote
4
promote migration
4

Similar Publications

Introduction: Parkinson's disease (PD) is a neurodegenerative disorder lacking therapies to replace lost dopaminergic neurons. Neural stem cell (NSC) transplantation faces survival and differentiation challenges. This study investigated feasibility and efficacy of paeoniflorin (PF) combined with NSC transplantation for PD treatment.

View Article and Find Full Text PDF

Microglia, the central nervous system's resident macrophages, are critical for immune defense, protecting neurons during infection. Their role in postnatal brain development, particularly after injury, remains unclear. Nucling, a protein up-regulated during cardiac muscle differentiation, regulates NF-κB, influencing apoptosis and cell proliferation.

View Article and Find Full Text PDF

CETN3 deficiency induces microcephaly by disrupting neural stem/progenitor cell fate through impaired centrosome assembly and RNA splicing.

EMBO Mol Med

September 2025

Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, National Stem Cell Translational Resource Center & Ministry of Education Stem Cell Resource Center, Frontier Science Center for Stem Cell Research, School of Li

Primary microcephaly, a rare congenital condition characterized by reduced brain size, occurs due to impaired neurogenesis during brain development. Through whole-exome sequencing, we identified compound heterozygous loss-of-function mutations in CENTRIN 3 (CETN3) in a 5-year-old patient with primary microcephaly. As CETN3 has not been previously linked to microcephaly, we investigated its potential function in neurodevelopment in human pluripotent stem cell-derived cerebral organoids.

View Article and Find Full Text PDF

Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).

View Article and Find Full Text PDF

The purpose of this study was to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, neuroprotection, and reprogramming of Müller glia (MG) into neurogenic MG-derived progenitor cells (MGPCs) in the adult male and female mouse retina. We found that S1P-related genes were dynamically regulated following retinal damage. (S1P receptor 1) and (sphingosine kinase 1) are expressed at low levels by resting MG and are rapidly upregulated following acute damage.

View Article and Find Full Text PDF