Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Data mining algorithms are extensively used to classify the data, in which prediction of disease using minimal computation time plays a vital role.

Objectives: The aim of this paper is to develop the classification model from reduced features and instances.

Methods: In this paper we proposed four search algorithms for feature selection the first algorithm is Random Global Optimal (RGO) search algorithm for searching the continuous, global optimal subset of features from the random population. The second is Global and Local Optimal (GLO) search algorithm for searching the global and local optimal subset of features from population. The third one is Random Local Optimal (RLO) search algorithm for generating random, local optimal subset of features from the random population. Finally the Random Global and Optimal (RGLO) search algorithm for searching the continuous, global and local optimal subset of features from the random population. RGLO search algorithm combines the properties of first three stated algorithm. The subsets of features generated from the proposed four search algorithms are evaluated using the consistency based subset evaluation measure. Instance based learning algorithm is applied to the resulting feature dataset to reduce the instances that are redundant or irrelevant for classification. The model developed using naïve Bayesian classifier from the reduced features and instances is validated with the tenfold cross validation.

Results: Classification accuracy based on RGLO search algorithm using naïve Bayesian classifier is 94.82% for Breast, 97.4% for DLBCL, 98.83% for SRBCT and 98.89% for Leukemia datasets.

Conclusion: The RGLO search based reduced features results in the high prediction rate with less computational time when compared with the complete dataset and other proposed subset generation algorithm.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573405614666180720152838DOI Listing

Publication Analysis

Top Keywords

search algorithm
28
local optimal
24
global local
16
optimal subset
16
subset features
16
rglo search
16
random global
12
reduced features
12
global optimal
12
algorithm searching
12

Similar Publications

The tree-based pipeline optimization tool (TPOT) is one of the earliest automated machine learning (ML) frameworks developed for optimizing ML pipelines, with an emphasis on addressing the complexities of biomedical research. TPOT uses genetic programming to explore a diverse space of pipeline structures and hyperparameter configurations in search of optimal pipelines. Here, we provide a comparative overview of the conceptual similarities and implementation differences between the previous and latest versions of TPOT, focusing on two key aspects: (1) the representation of ML pipelines and (2) the underlying algorithm driving pipeline optimization.

View Article and Find Full Text PDF

Background: Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are established treatments for obesity. However, it remains inconclusive whether the combination of lifestyle modifications and GLP-1RA interventions can lead to greater weight loss and better control of cardiovascular biomarkers. We aimed to evaluate the efficacy of this combination therapy on weight loss and cardiometabolic markers in adults with overweight or obesity.

View Article and Find Full Text PDF

Patients And Methods: In this multicenter longitudinal study, data from the Spanish Register in AS (AEU-PIEM/2014/0001) were reviewed. The study focused on a cohort of AS patients registered between 2014 and 2019, featuring open inclusion criteria and diverse follow-up strategies.

Results: A total of 3315 AS patients were recruited, with 2881 and 434 categorized into the low and intermediate risk groups based on NCCN grouping at inclusion.

View Article and Find Full Text PDF

Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF