A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Rational Design of Reversible Redox Shuttle for Highly Efficient Light-Driven Microswimmer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The light-driven micro/nanomotor (LMNM) is machinery that harvests photon energy and generates self-propulsion in varieties of liquid media. Though visions are made that these tiny swimming machines can serve future medicine for accurate drug delivery and noninvasive microsurgery, their biomedical application is still impeded by the insufficient propulsion efficiency. Here we provide a holistic model of LMNM by considering (i) photovoltaic, (ii) electrochemical, and (iii) electrokinetic processes therein. Such a quantitative model revealed the pivotal role of reaction kinetics and diffusion properties of shuttle ions in the propulsion efficiency of LMNM. With the guidance of this model, a group of ferrocene-based reversible redox shuttles, which generate slow-diffusion ions, was identified, showcasing a high locomotion velocity of ∼500 μm/s (∼100 body length per second) at an ultralow concentration (70 μM). Owing to the in-depth understanding of the fundamental energy conversion processes in LMNM, we anticipate that the development of other high-performance supporting chemicals and LMNM systems will be greatly motivated, foreseeing the advent of LMNM systems with superior efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.9b08799DOI Listing

Publication Analysis

Top Keywords

reversible redox
8
propulsion efficiency
8
lmnm systems
8
lmnm
6
rational design
4
design reversible
4
redox shuttle
4
shuttle highly
4
highly efficient
4
efficient light-driven
4

Similar Publications